Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:47:22.388Z Has data issue: false hasContentIssue false

Atomic Structure of Interfaces in Mazed Au Bicrystals

Published online by Cambridge University Press:  10 February 2011

C.J.D. Hetherington
Affiliation:
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, 72–150, Berkeley, CA 94720, USA
U. Dahmen
Affiliation:
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, 72–150, Berkeley, CA 94720, USA
J-M. Penisson
Affiliation:
CEA Grenoble, Département de Recherche Fondamentale sur la Matière Condensée, 17 Rue des Martyrs, 38054 Grenoble cedex 9, France
Get access

Abstract

Thin films of {111} Au have been grown on {111} Ge substrates. The film grows epitaxially in two crystallographically equivalent orientations, (111) and (111). After annealing, the film is removed from the substrate and the resulting bicrystal appears as a maze of domains with faceted boundaries mainly of type {112}. The high density of edge-on interfaces in the films makes them well suited to electron microscopy. In the <111> orientation, the 1.44Å spacing of the {220} lattice planes tests the high resolution capabilities of the latest microscopes.

The nature of the Au {111} film contrasts with that of films grown using different materials or different substrates and was found to have a three-dimensional character with the occurrence of extensive twinning on (111) in the plane of the film. Areas were found to thin considerably in the high voltage electron microscope and interfaces in these regions were analyzed and rigid body translations across the facets measured. The existence of distinct rigid body translations across neighboring facets is of particular interest.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dahmen, U., Douin, J., Hetherington, C.J.D. and Westmacott, K.H., Mat. Res. Soc. Symp. Proc. 139, pp. 8796 (1989).Google Scholar
2. Westmacott, K.H., Hinderberger, S. and Dahmen, U., to be submitted (1996).Google Scholar
3. Dahmen, U. and Westmacott, K.H., Mat. Res. Soc. Symp. Proc. 229, pp. 167172, (1991).Google Scholar
4. The Oxford Dictionary of Current English, ed. Thompson, Della, second edition (Oxford University Press, Oxford 1992).Google Scholar
5. Cherns, D., Spence, J.C.H., Anstis, G.R. and Hutchison, J.L., Phil. Mag. A 46, 849 (1982).Google Scholar
6. Tung, R.T., Sullivan, J.P., Screy, F. and Levi, A.F.J., Mat. Res. Soc. Symp. Proc. 221, pp. 7179(1991).Google Scholar
7. Pashley, D.W., Stowell, M.J., Jacobs, M.H. and Law, T.J., Phil. Mag. 10, 127 (1964).Google Scholar
8. Strecker, A., Salzberger, U. and Mayer, J., Prakt. Metallogr. 30 (10) 482495 (1993).Google Scholar
9. Phillipp, F., Höschen, R., Osaki, M., Möbus, G. and Rühle, M., Ultramic. 56, 110 (1994).Google Scholar
10. Kelly, A. and Groves, G.W., Crystallography and Crystal Defects. (Longman, London 1973) pp. 9398 and 290–292.Google Scholar
11. Pond, R.C. and Vitek, V., Proc. Roy. Soc. London A 357, 453 (1977).Google Scholar
12. Cherns, D., Phil. Mag. 30, 549556 (1974).Google Scholar
13. Marks, L.D., Heine, V. and Smith, D.J., Phys. Rev. Lett. 52, 656 (1984).Google Scholar
14. Hashimoto, H., Takai, Y., Yokota, Y., Endoh, H. and Fukada, E., Jpn. J. Appl. Phys. 19, L14 (1980)Google Scholar
15. Hytch, M.J., in Scanning Microscopy Supplement 10: Signal and Image Processing in Microscopy and Microanalysis. ed. Hawkes, P. (Scanning Microscopy Int., Chicago, 1996).Google Scholar
16. Ross, F.M., Kilaas, R., Snoeck, E., Hytch, M. and Thorel, A., this volume (1997).Google Scholar
17. Pond, R.C., Phil. Mag. A 47, L49 (1983).Google Scholar
18. Krakow, W. and Smith, D.A., Ultramicroscopy 22, 4756 (1987).Google Scholar
19. Ichinose, H., Ishida, Y., Baba, N. and Kanaya, K., Phil. Mag. A 52, 5159 (1985).Google Scholar
20. Medlin, D.L. and Foiles, S.M., private communication, (1996).Google Scholar