Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-09T05:34:14.774Z Has data issue: false hasContentIssue false

The Atomic Metron – a Basis for Synthesis of Metal Sub-Nanometer Particles with a Discrete Number of Atoms

Published online by Cambridge University Press:  31 May 2013

Oksana Love
Affiliation:
National Research Council Postdoctoral Associate, U.S. Naval Research Laboratory, Washington, DC 20375, U.S.A
David A. Kidwell*
Affiliation:
Chemistry Division, U.S. Naval Research Laboratory, Washington, DC 20375, U.S.A
Albert Epshteyn
Affiliation:
Chemistry Division, U.S. Naval Research Laboratory, Washington, DC 20375, U.S.A
Get access

Abstract

Few techniques are available to systematically synthesize and characterize metal particles below 1nm in size. We build nanoparticles in an atomically defined manner through the use of a high-fidelity molecular container we call an atomic metron, which is used to select and count the metallic ions that will make up the resultant nanoparticle. After a defined number of ions are selected, the metron may be spatially isolated and the metallic ions reduced to an isolated nanoparticle. Each step in the process is characterized via analytical methods. AFM is used to demonstrate the formation of sub-nanometer particles. The counting of atoms, isolation, and formation of nanoparticles, shows high potential for easy synthesis of sub-nanometer particles with fine control over the number of atoms in each particle.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Rodriguez, J. A., Evans, J., Graciani, J. s., Park, J.-B., Liu, P., Hrbek, J. and Sanz, J. F., The Journal of Physical Chemistry C 113 (17), 73647370 (2009).CrossRefGoogle Scholar
Negishi, Y., Takasugi, Y., Sato, S., Yao, H., Kimura, K. and Tsukuda, T., Journal of the American Chemical Society 126 (21), 65186519 (2004).CrossRefGoogle Scholar
Heaven, M. W., Dass, A., White, P. S., Holt, K. M. and Murray, R. W., Journal of the American Chemical Society 130 (12), 37543755 (2008).CrossRefGoogle Scholar
Qian, H., Eckenhoff, W. T., Zhu, Y., Pintauer, T. and Jin, R., Journal of the American Chemical Society 132 (24), 82808281 (2010).CrossRefGoogle Scholar
Zeng, C., Qian, H., Li, T., Li, G., Rosi, N. L., Yoon, B., Barnett, R. N., Whetten, R. L., Landman, U. and Jin, R., Angewandte Chemie International Edition 51 (52), 1311413118 (2012).CrossRefGoogle Scholar
Schmid, G., Chemical Society Reviews 37 (9), 19091930 (2008).CrossRefGoogle Scholar
Yamamoto, K., Imaoka, T., Chun, W.-J., Enoki, O., Katoh, H., Takenaga, M. and Sonoi, A., Nat Chem 2 (9), 789–789 (2009).CrossRefGoogle Scholar
Arsalani, N. and Mousavi, S. Z., Iranian Polymer Journal 12 (4), 291296 (2003).Google Scholar
Arsalani, N. and Hosseinzadeh, M., Iranian Polymer Journal 14 (4), 345352 (2005).Google Scholar
Conyers, S. M. and Kidwell, D. A., Anal. Biochem. 192 (1), 207211 (1991).CrossRefGoogle Scholar
Kidwell, D. A. and Conyers, S. M., Patent No. #5, 384, 265 (1995).Google Scholar
Kidwell, D. A. and Conyers, S. M., Patent No. #5, 637, 508 (1997).Google Scholar
Horcas, I., Fernanderz, R., Gomez-Rodriquez, J. M., Colchero, J., Gomez-Herrero, J., and Baro, A. M., Rev. Sci. Instrum., 78, 013705 (2007).CrossRefGoogle Scholar