Published online by Cambridge University Press: 31 January 2011
Atomic Layer deposition of thin Ruthenium films has been studied using a newly synthesized precursor (Cyclopentadienyl ethylruthenium dicarbonyl) and O2 as reactant gases. Under our experimental conditions, the film comprises both Ru and RuO2. The initial growth is dominated by Ru metal. As the number of cycles is increased, RuO2 appears. From infrared broadband absorption measurements, the transition from isolated, nucleated film to a continuous, conducting film (characterized by Drude absorption) can be determined. Optical simulations based on an effective-medium approach are implemented to simulate the in-situ broadband infrared absorption. A Lorentz oscillator model is developed, together with a Drude term for the metallic component, to describe optical properties of Ru/RuO2 growth.