Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T07:23:53.180Z Has data issue: false hasContentIssue false

Atomic Layer Deposition of Aluminum Nitride Thin films from Trimethyl Aluminum (TMA) and Ammonia

Published online by Cambridge University Press:  28 July 2011

Xinye Liu
Affiliation:
Genus, Inc., 1139 Karlstad Drive, Sunnyvale, CA 94089
Sasangan Ramanathan
Affiliation:
Genus, Inc., 1139 Karlstad Drive, Sunnyvale, CA 94089
Eddie Lee
Affiliation:
Genus, Inc., 1139 Karlstad Drive, Sunnyvale, CA 94089
Thomas E. Seidel
Affiliation:
Genus, Inc., 1139 Karlstad Drive, Sunnyvale, CA 94089
Get access

Abstract

Aluminum nitride (AlN) thin films were deposited from trimethyl aluminum (TMA) and Ammonia (NH3) by thermal atomic layer deposition (thermal ALD) and plasma enhanced atomic layer deposition (PEALD) on 200 mm silicon wafers. For both thermal ALD and PEALD, the deposition rate increased significantly with the deposition temperature. The deposition rate did not fully saturate even with 10 seconds of NH3 pulse time. Plasma significantly increased the deposition rate of AlN films. A large number of incubation cycles were needed to deposit AlN films on Si wafers. 100% step coverage was achieved on trenches with aspect ratio of 35:1 at 100 nm feature size by thermal ALD. X-ray diffraction (XRD) data showed that the AlN films deposited from 370 °C to 470 °C were polycrystalline. Glancing angle X-ray reflection (XRR) results showed that the RMS roughness of the films increased as the film thickness increased.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lee, J. W., Cuomo, J. J., Moody, B. F., Cho, Y. S., and Keusseyan, R. L., Mat. Res. Soc. Symp. Proc. Vol 783, B5.10.1, (2003)Google Scholar
2. Sowers, A.T., Christman, J. A., Bremser, M. D., Ward, B. L., Davis, R. F., and Nemanich, R. J., Appl. Phys. Lett. Vol. 71, 2289 (1998)Google Scholar
3. Gordon, Roy G., Hoffman, David, and Riaz, Umar, J. Mater. Res, Vol. 6, No. 1, 5 (1991)Google Scholar
4. Luo, B., Ren, F., Mastro, M. A., Tsvetkov, D., Pechnikov, A., Soukhoveev, V., Dmitriev, V., Baik, K. H., and Pearton, S. J., Mat. Res. Soc. Symp. Proc. Vol. 764, C2.3.1 (2003)Google Scholar
5. Guerrero, R. M. and Garcia, J. R. V., Superficies y, Vacio 9, 82, Diciembre 1999 Google Scholar
6. Riihelä, Diana, Ritala, Mikko, Matero, Raija, Leskelä, Markku, Jokinen, Janne and Haussalo, Pekka, Chemical Vapor Deposition, Vol. 2, 277 (1996)Google Scholar
7. MSDS of TMA from Epichem, available at http://www.epichem.com Google Scholar
8. Green, M. L., Ho, M.-Y., Busch, B., Wilk, G. D., Sorsch, T., Conard, T., Brijs, B., Vandervorst, W., Räisänen, P. I., Muller, D., Bude, M., and Grazul, J., J. Appl. Phys. Vol. 92, 7168 (2002)Google Scholar