Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-20T09:29:03.305Z Has data issue: false hasContentIssue false

Atomic Force Microscopy and Raman Spectroscopy Study of Strain Relaxation in InGaAs ON GaAs(100) Grown by Chemical Beam Epitaxy Using Unprecracked Monoethylarsine

Published online by Cambridge University Press:  21 February 2011

Seong-Ju Park
Affiliation:
Electronics and Telecommunications Research Institute, Taejon 305–600, Korea
Seung-Bock Kim
Affiliation:
Electronics and Telecommunications Research Institute, Taejon 305–600, Korea
Jeong Sook Ha
Affiliation:
Electronics and Telecommunications Research Institute, Taejon 305–600, Korea
Jeong-Rae Ro
Affiliation:
Electronics and Telecommunications Research Institute, Taejon 305–600, Korea
El-Hang Lee
Affiliation:
Electronics and Telecommunications Research Institute, Taejon 305–600, Korea
Eun-Kyung Suh
Affiliation:
Jeonbuk National University, Jeonju 560–756, Korea
Get access

Abstract

The correlation of surface morphology with strain relaxation in the In0.15Ga0.85As epilayer on GaAs(100) grown by chemical beam epitaxy using unprecracked monoethylarsine has been investigated. The surface morphology of InGaAs was analyzed by atomic force microscopy as the epilayer thickness was increased from 0.025 to 1.668 μm. The changes in the surface morphology indicated that surface roughening is related to the process of strain relaxation in the film. The strain-induced shifts in the GaAs-like longitudinal optical phonon in the Raman spectrum also indicated that the strains in the InGaAs epilayer relax via step-wise process with increasing the film thickness beyond the critical thickness, which agrees well with the changes of surface mophology.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kavanagh, K. L., Capano, M. A., Hobbs, L. W., Barbour, J. C., Maree, P. M. J., chaff, W., Mayer, J. W., Pettit, D., Woodall, J. M., Stroscio, J. A., and Feenstra, R. M., J. Appl. Phys. 64, 4843 (1988).Google Scholar
2. Price, G. L., Appl. Phys. Lett. 53, 1288 (1988).Google Scholar
3. Brafman, O., Fekete, D., and Sarfaty, R., Appl. Phys. Lett. 58, 400 (1991).Google Scholar
4. Whaley, G. J. and Cohen, P. I., Appl. Phys. Lett. 57, 144 (1990).Google Scholar
5. Park, S. J., Ro, J. R., Sim, J. K., and Lee, E. H., J. Cryst. Growth 136, 138 (1994),Google Scholar
Park, S. J., Ro, J. R., Sim, J. K., and Lee, E. H., J. Cryst. Growth 136, 143 (1994).Google Scholar
6. Ro, J. R., Park, S. J., Kim, S. B., Lee, E. H., submitted to J. Cryst. Growth(1994).Google Scholar
7. Berger, P. R., Chang, K., Bhattacharya, P., and Singh, J., Appl. Phys. Lett. 53, 684 (1988).Google Scholar
8. Fitzgerald, E. A., Ast, D. G., Kichner, P. D., Pettit, G. D., and Woodall, J. M., J. Appl. Phys. 63, 693 (1988).Google Scholar
9. Olsen, G., and Ettenberg, M., Crystal Growth, edited by Goodman, C. H. L. (Plenum, New York, 1974), Vol. 2, p. 32.Google Scholar
10. Cerdeira, F., Buchenauer, C. J., Poliak, F. H., and Cardona, M., Phys. Rev. B 5, 580 (1972).Google Scholar
11. Yoon, S. F., J. Vac. Sci. Technol. B 11, 562 (1993)Google Scholar
12. Swaminathan, V. and Macrander, A. T., Material Aspects of GaAs and InP based Structures (Prentice-Hall, Engelwood Cliffs, NJ, 1991), p. 337.Google Scholar
13. Nakayama, M., Kubota, K., Kanata, T., Kato, H., Chika, S., and Sano, N., J. Appl. Phys. 58, 4342 (1985).Google Scholar
14. Park, S. J., Ro, J. R., Ha, J. S., Kim, S. B., Park, H. H., Lee, E. H., Yi, J. Y., Lee, J. Y., to be submitted.Google Scholar