Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T01:43:49.984Z Has data issue: false hasContentIssue false

Atomic Dynamics During Silicon Oxidation and the Nature of Defects at the Si-SiO2 Interface

Published online by Cambridge University Press:  10 February 2011

S. T. Pantelides
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 ([email protected])
M. Ramamoorthy
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 ([email protected])
Get access

Abstract

Oxidation of thin-film Si, oxygen precipitation in bulk crystalline Si, and the formation of buried oxide layers (as in the SIMOX process for SOI) have been studied extensively for decades but the underlying atomic scale processes have remained elusive. Furthermore, common features of these phenomena have not been generally appreciated, in part because the kinetics are substantially different in the different cases. In this paper we review recent theoretical research based on atomic-scale first-principles calculations that provides a unified description of the three phenomena. In particular, we account for both the normal and enhanced mode of oxygen diffusion that leads to the formation of oxygen clusters known as thermal donors and their subsequent annealing and evolution into SiO2-like precipitates. It is proposed that a novel family of interface defects that are akin to thermal donors, composed of “frustrated” Si-O bonds, are a natural by-product of thin-film oxidation. An explicit mechanism for the emission of Si interstitials, which occurs during both oxidation and oxygen precipitation, is obtained. It is shown that emission of Si interstitials eliminates the frustrated-bond defects, thus explaining the high quality of the resulting interfaces. It is proposed that frustrated-bond defects are responsible for much of the behavior observed at the Si-SiO2 interface that cannot be accounted by dangling bonds and for the amphoteric traps that occur in high concentrations in SOI material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. The Physics of SiO2 and Its Interfaces, edited by Pantelides, S. T., (Pergamem, New York, 1978);Google Scholar
The Si-SiO2 System, edited by Balk, P., (Elsevier, Amsterdam, 1988);Google Scholar
SiO2 and Its Interfaces, edited by Pantelides, S. T. and Lucovsky, G., MRS Proceedings vol. 105 (1988);Google Scholar
The Physics and Chemistry of SiO2 and Si-SiO2 Interfaces, edited by Helms, C. R. and Deal, B. E., (Plenum, New York, 1993)Google Scholar
2. Deal, B. E. and Grove, A. S., J. Appl. Phys. 36, 3770 (1965).Google Scholar
3. Nishi, Y., Jap. J. Appl. Phys. 10, 51 (1971).Google Scholar
4. Poindexter, E. H., Helbert, J. N., Wagner, B. E., and Caplan, P. J., IEEE Trans. ED-24, 1217 (1977).Google Scholar
5. Lenahan, P. M., Microelectron. Engin. 22, 129 (1993);Google Scholar
Brower, K. L. and Myers, S. M., Appl. Phys. Lett. 57, 162 (1990).Google Scholar
6. Trombetta, L. P., Gerardi, G. J., DiMaria, D. J., and Tierney, E., J. Appl. Phys. 64, 2434 (1988).Google Scholar
7. Stathis, J. H. and DiMaria, D. J., Appl. Phys. Lett. 61, 2887 (1992);Google Scholar
Stathis, J. H., Microelectron. Eng. 22, 191 (1993);Google Scholar
Cartier, E., Stathis, J. H., and Buchanan, D., Appl. Phys. Lett. 63, 1510 (1993).Google Scholar
8. Druijf, K. G., de Nijs, J. M. M., van der Drift, E., Granneman, E. H. A., and Balk, P., Appl. Phys. Lett. 65, 347 (1994);Google Scholar
de Nijs, J. M. M., Druijf, K. G., Afanas'ev, V. V., van der Drift, E., and Balk, P., Appl. Phys. Lett. 65, 2428 (1994).Google Scholar
9. Cartier, E. and Stathis, J. H., Appl. Phys. Lett. 69, 103 (1996).Google Scholar
10. Warren, W. L., Vanheusden, K., Schwank, J. R., Fleetwood, D. M., Winokur, P. S. and Devine, R. A. B., Appl. Phys. Lett. 66, 2993 (1996).Google Scholar
11. Lucovsky, G., Phil. Mag. B 39, 513 (1979);Google Scholar
Poindexter, E. H., J. Non-Cryst. Solids 187, 257 (1995);Google Scholar
Jing, Z., Lucovsky, G., and Whitten, J. L. J. Vac. Sci. Technol. B 13, 1613 (1995).Google Scholar
12. Fahey, P., Griffin, P. B. and Plummer, J. D., Rev. Mod. Phys. 61, 289 (1989).Google Scholar
13. Fuller, C. S., Dietzenberger, J. W., Hannay, N. B. and Buehler, E., Phys. Rev. 96, 833 (1954);Google Scholar
Kaiser, W., Frisch, H. L., and Reiss, H., Phys. Rev. 112, 1546 (1958).Google Scholar
14. Chadi, D. J., Phys. Rev. Lett. 77, 861 (1977).Google Scholar
15. Ewels, C. P., Jones, R., Öberg, S., Miro, J., and Deák, P., Phys. Rev. Lett. 77, 865 (1996).Google Scholar
16. Snyder, L. C. and Corbett, J. W., MRS Proceedings 59, 207 (1985);Google Scholar
Snyder, L. C., Corbett, J. W., Deák, P., and Wu, R., MRS Proceedings 104, 179 (1988).Google Scholar
17. Newman, R. C, Oates, A. S., and Livingston, F. M., J. Phys. C 16, 1667 (1983);Google Scholar
Claybourn, M. and Newman, R.C., Appl. Phys. Lett. 51, 2197 (1987).Google Scholar
18. Gösele, U. and Tan, T. Y., Appl. Phys. A 28, 79 (1982);Google Scholar
Gösele, U. et. Al. Appl. Phys. A 48, 219 (1989).Google Scholar
19. Newman, R. C., Tucker, J. H., Brown, A. R., and McQuaid, S.A., J. Phys. B 16, L667 (1983).Google Scholar
20. Ourmazd, A., Schröter, W. and Bourret, A., J. Appl. Phys. 56, 1670 (1984).Google Scholar
21. Ewels, C. P., Jones, R., and Öberg, S., Proceedings of the NATO Advanced Research Workshop, March 1996.Google Scholar
22. Bourret, A., Thibault-Dessaux, J., and Seidman, D. N., J. Appl. Phys. 55, 825 (1984).Google Scholar
23. Lam, H. W., in Epitaxial Silicon Technology, edited by Baliga, B. J., (Academic Press, Orlando, 1986), p. 269;Google Scholar
Guerra, M. A., Solid State Technol. 11, 75 (1990).Google Scholar
24. Margail, J., Stoemenos, J. S., Jaussaud, C., and Bruel, M., Appl. Phys. Lett. 54, 526 (1989).Google Scholar
25. Afanas'ev, V. V., Stesmans, A., Revesz, A. G., and Hughes, H. L., J. Appl. Phys. 82, 2184 (1997).Google Scholar
26. Ramamoorthy, M. and Pantelides, S. T., Phys. Rev. Lett. 76, 267 (1996).Google Scholar
27. Ramamoorthy, M. and Pantelides, S.T., in Early Stages of Oxygen Precipitation in Silicon, edited by Jones, R., NATO ASI Series 3: High Technology, vol. 17 (1996).Google Scholar
28. Ramamoorthy, M. and Pantelides, S. T., Solid State Commun, in press.Google Scholar
29. Pantelides, S. T. and Ramamoorthy, M., Silicon-On-Insulator Technology and Devices III, edited by Cristoloveanu, S. et al. (Electrochemical Society, Pennington, NJ, 1996), v. 97–23 Google Scholar
30. Ramamoorthy, M. and Pantelides, S. T., submitted to Phys. Rev. Lett.Google Scholar
31. Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964);Google Scholar
Kohn, W. and Sham, L. J., Phys, Rev. 140, A1133 (1965).Google Scholar
32. Car, R. and Parrinello, M., Phys. Rev. Lett. 55, 2471 (1985).Google Scholar
33. Vanderbilt, D., Phys. Rev. B 41, 7892 (1990).Google Scholar
34. Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A., and Joannopoulos, J. D., Rev. Mod. Phys. 64, 1045 (1992).Google Scholar
35. Chadi, D. J. and Cohen, M. L., Phys. Rev. B 8, 5747 (1973).Google Scholar
36. Mikkelsen, J. C. Jr Appl. Phys. Lett. 40, 336 (1982).Google Scholar
37. Corbett, J. W., MacDonald, R. S., and Watkins, G. D., J. Phys. Chem. Solids 25, 873 (1964);Google Scholar
Martinez, E., Plans, J., and Yndurain, F., Phys. Rev. B 36, 8043 (1987).Google Scholar
38. Snyder, L. C. and Corbett, J. W., MRS Proceedings 59, 207 (1986).Google Scholar
39. Kelly, P. J. and Car, R., Phys. Rev. B 45, 6543 (1992).Google Scholar
40. Saito, M. and Oshiyama, A., Phys. Rev. B 38, 10711 (1988);Google Scholar
Aoshiyama, A. and Saito, M., in Defect Control in Semiconductors, edited by Sumino, K. (Elsevier, Amsterdam, 1990).Google Scholar
41. Needels, M., Joannopoulos, J. D., Bar-Yam, Y., and Pantelides, S. T., Phys. Rev. B 43, 4208 (1991); MRS Proceedings 209, 103 (1991).Google Scholar
42. Etreicher, S. K., Phys. Rev. B 41, 9886 (1990).Google Scholar
43. Jones, R., Öberg, S., and Umeski, A., Mater. Sci. Forum 83–87, 551 (1992).Google Scholar
44. Jiang, Z. and Brown, R. A., Phys. Rev. Lett. 74, 2046 (1995).Google Scholar
45. Stein, H. J. and Hahn, S. K., Appl. Phys. Lett. 56, 63 (1990);Google Scholar
Newman, R. C, Tucker, J. H., Brown, A. R., and McQuaid, S. A., J. Appl. Phys. 70, 3061 (1991).Google Scholar
46. Van de Walle, C. G., Denteneer, P. J. H., Bar-Yam, Y., and Pantelides, S. T., Phys. Rev. B 39, 10791 (1989).Google Scholar
47. Suezawa, M. and Sumino, K., Phys. Status Solidi (a) 85, 469 (1985).Google Scholar
48. See, e.g., Miyamoto, Y. and Oshiyama, A., Phys. Rev. B 43, 9287 (1991).Google Scholar