Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T06:47:11.610Z Has data issue: false hasContentIssue false

Atomic and Electronic Structure of Multilayer Graphene on a Monolayer Hexagonal Boron Nitride

Published online by Cambridge University Press:  04 June 2013

Celal Yelgel
Affiliation:
School of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QL, U.K.
Gyaneshwar P. Srivastava
Affiliation:
School of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QL, U.K.
Get access

Abstract

The atomic and electronic structures of multilayer graphene on a monolayer boron nitride (MLBN) have been investigated by using the pseudopotential method and the local density approximation (LDA) of the density functional theory (DFT). We show that the LDA energy band gap can be tuned in the range 41-278 meV for a multilayer graphene by using MLBN as a substrate. The dispersion of the π/π* bands slightly away from the K point is linear with the electron speed of 0.9×106 and 0.93×106 for graphene (MLG)/MLBN and ABA trilayer graphene (TLG)/MLBN systems, respectively. This behaviour becomes quadratic with a relative effective mass of 0.0021 for the bilayer graphene (BLG)/MLBN system. The calculated binding energies are in the range of 10-43 meV per C atom.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., Science 306, 666 (2004).CrossRefGoogle Scholar
Neugebauer, P., Orlita, M., Faugeras, C., Barra, A. L., and Potemski, M., Phys. Rev. Lett. 103, 136403 (2009).CrossRefGoogle Scholar
Hofrichter, J., Szafranek, B. N., Otto, M., Echtermeyer, T. J., Baus, M., Majerus, A., Geringer, V., Ramsteiner, M., and Kurz, H., Nano Lett. 10, 36 (2010).CrossRefGoogle Scholar
Usachov, D., Adamchuk, V. K., Haberer, D., Gr¨uneis, A., Sachdev, H., Preobrajenski, A. B., Laubschat, C., and Vyalikh, D. V., Phys. Rev. B 82, 075415 (2010).CrossRefGoogle Scholar
Dean, C. R., Young, A. F., Cadden-Zimansky, P., Wang, L., Ren, H., Watanabe, K., Taniguchi, T., Kim, P., Hone, J., and Shepard, K. L., Nature Physics 7, 693 (2011).CrossRefGoogle Scholar
Dean, C. R., Young, A. F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K. L., and Hone, J., Nat. Nanotech. 5, 722 (2010).CrossRefGoogle Scholar
Giovannetti, G., Khomyakov, P. A., Brocks, G., Kelly, P. J., and van den Brink, J., Phys. Rev. B 76, 073103 (2007).CrossRefGoogle Scholar
Slawinska, J., Zasada, I., and Klusek, Z., Phys. Rev. B 81, 155433 (2010).CrossRefGoogle Scholar
Fan, Y., Zhao, M., Wang, Z., Zhang, X., and Zhang, H., Appl. Phys. Lett. 98, 083103 (2011).CrossRefGoogle Scholar
Perdew, J. P. and Zunger, A., Phys. Rev. B 23, 5048 (1981).CrossRefGoogle Scholar
Gonze, X., Stumpf, R., and Scheffler, M., Phys. Rev. B 44, 8503 (1991).CrossRefGoogle Scholar
Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 5189 (1976).CrossRefGoogle Scholar
Srivastava, G. P., Theoretical Modelling of Semiconductor Surfaces, (World Scientific, Singapore, 1999).CrossRefGoogle Scholar
Fan, Y., Zhao, M., Wang, Z., Zhang, X., and Zhang, H., Appl. Phys. Lett. 98, 083103 (2011).CrossRefGoogle Scholar
Sachs, B., Wehling, T. O., Katsnelson, M. I., and Lichtenstein, A. I., Phys. Rev. B 84, 195414 (2011).CrossRefGoogle Scholar
Carsten, B., Predrag, L., Rabie, D., Johann, C., Timm, G., Nicolae, A., Vasile, C., Radovan, B., Alpha, T. N., Stefan, B., J¨org, Z., and Thomas, M., Phys. Rev. Lett. 107, 036101 (2011).Google Scholar
Victor, G. R., Wei, L., Egbert, Z., Matthias, S., and Alexandre, T., Phys. Rev. Lett. 108, 146103 (2012).Google Scholar
Kindermann, M., Uchoa, B., and Miller, D. L., Phys. Rev. B 86, 115415 (2012).CrossRefGoogle Scholar
Ortix, C., Yang, L., and Brink, J., Phys. Rev. B 86, 081405(R) (2012).CrossRefGoogle Scholar
Yelgel, C. and Srivastava, G. P., Appl. Surf. Sci. 258, 8338 (2012).CrossRefGoogle Scholar
Zhang, Y., Tang, T., Girit, C., Hao, Z., Martin, M. C., Zett, A., Crommie, M. F., Shen, Y. R., and Wang, F., Nature 459, 820 (2009).CrossRefGoogle Scholar
Castro, E. V., Novoselov, K. S., Morozov, S. V., Peres, N. M. R., Lopes dos Santos, J. M. B., Nilsson, J., Guinea, F., Geim, A. K., and Castro Neto, A. H., J. Phys.: Condens. Matter 22, 175503 (2010).Google Scholar