Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:13:50.905Z Has data issue: false hasContentIssue false

Assessment of Organotellurium Compounds for Use as Movpe Precursors

Published online by Cambridge University Press:  25 February 2011

J. E. Hails
Affiliation:
Royal Signals & Radar Establishment, St. Andrews Road, Malvern, Worcs. WR14 3PS. UK
S. J. C. Irvine
Affiliation:
Royal Signals & Radar Establishment, St. Andrews Road, Malvern, Worcs. WR14 3PS. UK
J. B. Mullin
Affiliation:
Royal Signals & Radar Establishment, St. Andrews Road, Malvern, Worcs. WR14 3PS. UK
D. V. Shenai-Khatkhate
Affiliation:
University of St. Andrews, St. Andrews, Fife, UK
D. Cole-Hamilton
Affiliation:
University of St. Andrews, St. Andrews, Fife, UK
Get access

Abstract

In order to reduce the growth temperature of (Hg,Cd)Te by MOVPE below 350–400°C, alternative organometallic precursors will be required which either decompose at a lower temperature than existing precursors or which absorb strongly at a suitable wavelength in the ultraviolet. The features required for a programme of assessment of organometallics are discussed. UV absorption spectra for dimethyltelluride, dimethylditelluride, diethyltelluride, di-iso-propyltelluride and diallyltelluride are presented and their usefulness as photolytic MOVPE precursors discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kuech, T.F. and McCaldin, J.O., J. Electrochem. Soc. 128, 1142 (1981).CrossRefGoogle Scholar
2. Irvine, S.J.C., Mullin, J.B., Robbins, D.J. and Glaser, J.L., Mat. Res. Soc. Symp. Proc. 29, 253 (1984).CrossRefGoogle Scholar
3. Irvine, S.J.C., Mullin, J.B. and Royle, A., J. Crystal Growth 57, 15 (1982).Google Scholar
4. Mullin, J.B., Irvine, S.J.C. and Tunnicliffe, J., J. Crystal Growth 68, 214 (1984).Google Scholar
5. Thompson, J., Mackett, P. and Smith, L.M., Materials Letters 5(3), 72 (1987).CrossRefGoogle Scholar
6. Hoke, W.E. and Lemonias, P.J., Appl. Phys. Lett. 46(4), 398 (1985).CrossRefGoogle Scholar
7. Hoke, W.E. and Lemonias, P.J., Appl. Phys. Lett. 48(24), 1669 (1986).CrossRefGoogle Scholar
8. Lichtmann, L.S., Parsons, J.D. and Cirlin, E.H., J. Crystal Growth 86, 217 (1988).CrossRefGoogle Scholar
9. Parsons, J.D. and Lichtmann, L.S., J. Crystal Growth 86, 222 (1988).CrossRefGoogle Scholar
10. Korenstein, R., Hoke, W. E., Lemonias, P. J., Higa, K. T. and Harris, D. C., J. Appl. Phys. 62 (12), 4929 (1987).Google Scholar
11. Kisker, D. W., Steigerwald, M. L., Kometani, T.Y. and Jeffers, K.S., Appl. Phys. Lett. 50(23), 1681, (1987).Google Scholar
12. Irvine, S. J. C., Hill, H., Dosser, O. D., Hails, J.E., Mullin, J. B., Shenai-Khatkhate, D.V. and Cole-Hamilton, D., Materials Letters 7, 25 (1988).Google Scholar