Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-27T03:54:45.695Z Has data issue: false hasContentIssue false

Assembly of Nanomaterials using Polymers and Biomaterials: Sensing and Electronic Applications

Published online by Cambridge University Press:  26 February 2011

Jaebeom Lee
Affiliation:
[email protected], University of Michigan, 1930 Lindsay Ln, Ann Arbor, MI, 48104, Ann Arbor, MI, 48104, United States
Nicholas A Kotov
Affiliation:
[email protected], University of Michigan, Chemical Engineering, United States
Alexander O Govorov
Affiliation:
[email protected], Ohio University, Physics and Astronomy, United States
Get access

Abstract

The hybrid assembly of inorganic nanomaterials upon chemical and biological bonding has occupied attentions to yield manifold optical and electromagnetic properties. Nanomaterials that can be virtually conjugated with any other nanomaterials by ligand-receptor / antigen-antibody reactions, polymer tethering, and DNA hybridization are of importance for fundamental comprehension of electronic process in nano-scale regime as well as for development of advanced sensing and imaging devices. Semiconducting nanoparticles(NPs)/ nanowires(NWs) like CdTe that have compatibly narrow range of strong photoluminescence (PL) with broad range of absorbance band stand in the spotlight of imaging and sensing materials. Optical effects in noble metallic NPs such as Au and Ag have been worth noticing due to localized surface plasmons. These optical modes lead to highly localized electromagnetic fields outside the particles that take advantage of the development of novel system such as surface enhanced Raman spectroscopy (SERS) and highly compacted optoelectronic devices and sensors. In particular, it is known that metallic NPs has stronger plasmon field than the surface of bulky metals, leading to potent interactions to adjacent materials in secured conjugated superstructures that induce non-linear optical properties. In this report, we review on a novel biological / polymeric inspired hybrid superstructures between semiconducting CdTe nanowires and Au or Ag nanoparticles. This superstructure demonstrates remarkable optical effects i.e., PL en-hancement of NWs, sensing application for temperature and solvents stemming from SERS-like collective interactions of NPs and NWs., and light harvest from Förster resonance energy tra-nsfer (FRET).

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lee, Jaebeom, Govorov, Alexander O. & Kotov, Nicholas A.. ioconjugated Superstructures of CdTe Nanowires and Nanoparticles: Multi-Step Cascade Fluorescence Resonance Energy Transfer. Nano Letter 5, 20632069 (2005).Google Scholar
2 Lee, Jaebeom, Govorov, Alexander O. & Kotov, Nicholas A.. Nanoparticle Assemblies with Molecular Springs: Nanoscale Thermometer. Angewandte Chemie Inter. Ed. 117, 76057608 (2005).Google Scholar
3 Lee, J., Govorov, A.O., Dulka, J. & Kotov, N.A. Bioconjugates of CdTe Nanowires and Au Nanoparticles: Plasmon-Exciton Interactions, Luminescence Enhancement, and Collective Effects. Nano Letter 4, 23232330 (2004).Google Scholar
4 McDonald, S.A. et al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nature Materials 4, 138142 (2005).Google Scholar
5 Sukhorukov, G.B. et al. Nanoengineered polymer capsules: Tools for detection, controlled delivery, and site-specific manipulation. Small 1, 194200 (2005).Google Scholar
6 Govorov, A.O. & Kalameitsev, A.V. Optical properties of a semiconductor quantum dot with a single magnetic impurity: photoinduced spin orientation. Physical Review B: Condensed Matter and Materials Physics 71, 035338–1 (2005).Google Scholar
7 Govorov, A.O. Spin-Forster transfer optically-excited quantum dots. Physical Review B: Condensed Matter and Materials Physics, in press. (2005).Google Scholar
8 Umezu, I. et al. Recombination process of CdS quantum dot covered by novel polymer chains. Physica E: Low-Dimensional Systems & Nanostructures (Amsterdam, Netherlands) 21, 11021105 (2004).Google Scholar
9 Rong, M.Z., Zhang, M.Q., Liang, H.C. & Zeng, H.M. Surface derivatization of nano-CdS clusters and its effect on the performance of CdS quantum dots in solvents and polymeric matrices. Applied Surface Science 228, 176190 (2004).Google Scholar
10 Bjoerk, M.T. et al. Few-Electron Quantum Dots in Nanowires. Nano Letters 4, 16211625 (2004).Google Scholar
11 Nagasaki, Y. et al. Novel molecular recognition via fluorescent resonance energy transfer using a biotin-PEG/polyamine stabilized CdS quantum dot. Langmuir 20, 63966400 (2004).Google Scholar
12 Skaff, H., Sill, K. & Emrick, T. Controlled dispersion and assembly of quantum dots using polymers: Poly(para-phenylene)-quantum dot composites. 2004. Abstracts of Papers, 228th ACS National Meeting, Philadelphia, PA, United States, August 22-26, 2004.Google Scholar
13 Hoshino, A. et al. Physicochemical Properties and Cellular Toxicity of Nanocrystal Quantum Dots Depend on Their Surface Modification. Nano Letters 4, 21632169 (2004).Google Scholar
14 Shiohara, A., Hoshino, A., Hanaki, K.i., Suzuki, K. & Yamamoto, K. On the cyto-toxicity caused by quantum dots. Microbiology and Immunology 48, 669675 (2004).Google Scholar
15 Smith, A.M., Gao, X. & Nie, S. Quantum dot nanocrystals for in vivo molecular and cellular imaging. Photochemistry and Photobiology 80, 377385 (2004).Google Scholar
16 Green, M. Semiconductor quantum dots as biological imaging agents. Angewandte Chemie, International Edition 43, 41294131 (2004).Google Scholar
17 Karrai, K. et al. Hybridization of electronic states in quantum dots through photon emission. Nature (London, United Kingdom) 427, 135138 (2004).Google Scholar
18 Ribeiro, E., Govorov, A.O., Carvalho, W. Jr, & Medeiros-Ribeiro, G. Aharonov-Bohm Signature for Neutral Polarized Excitons in Type-II Quantum Dot Ensembles. Physical Review Letters 92, 126402 (2004).Google Scholar
19 Wang, Y., Tang, Z., Tan, S. & Kotov, N.A. Biological Assembly of Nanocircuit Prototypes from Protein-Modified CdTe Nanowires. Nano Letters 5, 243248 (2005).Google Scholar
20 Lee, Jaebeom & Kotov, Nicholas A.. Bioconjugates of CdTe Nanowires and Au Nanoparticles:pH dependence of photoluminescence and its reversibility. In preparation (2005).Google Scholar
21 Sun, X.H. et al. Reductive Self-assembling of Pd and Rh Nanoparticles on Silicon Nanowire Templates. Chemistry of Materials 16, 11431152 (2004).Google Scholar
22 Tan, S., Tang, Z., Liang, X. & Kotov, N.A. Resonance Tunneling Diode Structures on CdTe Nanowires Made by Conductive AFM. Nano Letters 4, 16371641 (2004).Google Scholar
23 Liang, X., Tan, S., Tang, Z. & Kotov, N.A. Investigation of Transversal Conductance in Semiconductor CdTe Nanowires with and without a Coaxial Silica Shell. Langmuir 20, 10161020 (2004).Google Scholar
24 Wang, Y., Tang, Z., Liang, X., Liz-Marzan, L.M. & Kotov, N.A. SiO2-coated CdTe nanowires: bristled nano centipedes. Nano Letters 4, 225231 (2004).Google Scholar
25 Mao, C. et al. Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science (Washington, DC, United States) 303, 213217 (2004).Google Scholar
26 Cai, L.T. et al. Nanowire-Based Molecular Monolayer Junctions: Synthesis, Assembly, and Electrical Characterization. Journal of Physical Chemistry B 108, 28272832 (2004).Google Scholar
27 Zheng, G., Lu, W., Jin, S. & Lieber, C.M. Synthesis and fabrication of high-performance n-type silicon nanowire transistors. Advanced Materials (Weinheim, Germany) 16, 18901893 (2004).Google Scholar
28 Barrelet, C.J., Greytak, A.B. & Lieber, C.M. Nanowire Photonic Circuit Elements. Nano Letters 4, 19811985 (2004).Google Scholar
29 Qian, F. et al. Gallium Nitride-Based Nanowire Radial Heterostructures for Nanophotonics. Nano Letters 4, 19751979 (2004).Google Scholar
30 Mikkelsen, A. et al. Direct imaging of the atomic structure inside a nanowire by scanning tunnelling microscopy. Nature Materials 3, 519523 (2004).Google Scholar
31 Patolsky, F., Weizmann, Y. & Willner, I. Actin-based metallic nanowires as bio-nanotransporters. Nature Materials 3, 692695 (2004).Google Scholar
32 Lee, Jaebeom, Govorov, Alexander O., Dulka, John & Kotov, Nicholas A.. Fluorescence enhancement and energy transport from bioconjugation between nanowires and nanoparticles. Proc. SPIE Int. Soc. Opt. Eng. 5513, 226 (2004).Google Scholar
33 Li, Z. et al. Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Letters 4, 245247 (2004).Google Scholar
34 Lee, Y.H. et al. Coulomb blockade devices of Co dot arrays on tungsten-nanowire templates fabricated by using only a thin film technique. Applied Physics Letters 82, 35353537 (2003).Google Scholar
35 Yan, H., Park, S.H., Finkelstein, G., Reif, J.H. & LaBean, T.H. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science (Washington, DC, United States) 301, 18821884 (2003).Google Scholar
36 Vayssieres, L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Advanced Materials (Weinheim, Germany) 15, 464466 (2003).Google Scholar
37 Zhong, Z., Wang, D., Cui, Y., Bockrath, M.W. & Lieber, C.M. Nanowire Crossbar Arrays as Address Decoders for Integrated Nanosystems. Science (Washington, DC, United States) 302, 13771380 (2003).Google Scholar
38 Tang, Z., Kotov, N.A. & Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. SCIENCE 297, 237240 (2002).Google Scholar
39 Harnack, O., Ford, W.E., Yasuda, A. & Wessels, J.M. Tris(hydroxymethyl)phosphine-capped gold particles templated by DNA as nanowire precursors. Nano Letters 2, 919923 (2002).Google Scholar
40 Penner, R.M. Mesoscopic Metal Particles and Wires by Electrodeposition. Journal of Physical Chemistry B 106, 33393353 (2002).Google Scholar
41 Ford, W.E., Harnack, O., Yasuda, A. & Wessels, J.M. Platinated DNA as precursors to templated chains of metal nanoparticles. Advanced Materials (Weinheim, Germany) 13, 17931797 (2001).Google Scholar
42 Cui, Y., Wei, Q., Park, H. & Lieber, C.M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. SCIENCE 293, 12891292 (2001).Google Scholar
43 Gates, D.P. Inorganic and organometallic polymers. Annual Reports on the Progress of Chemistry, Section A: Inorganic Chemistry 100, 489508 (2004).Google Scholar
44 Lucarelli, M. et al. Innate defence functions of macrophages can be biased by nano-sized ceramic and metallic particles. European Cytokine Network 15, 339346 (2004).Google Scholar
45 Lakowicz, J.R. et al. Increased sensitivity of fluorescence detection: using metallic nanoparticles. PharmaGenomics 3, 38, 42, 44, 46 (2003).Google Scholar
46 Vo-Dinh, T. Surface-enhanced Raman spectroscopy using metallic nanostructures. TrAC, Trends in Analytical Chemistry 17, 557582 (1998).Google Scholar
47 Gaponik, N. et al. Thiol-Capping of CdTe Nanocrystals: An Alternative to Organometallic Synthetic Routes. Journal of Physical Chemistry B 106, 71777185 (2002).Google Scholar
48 Jana, N.R., Gearheart, L. & Murphy, C.J. Seeding growth for size control of 5-40 nm diameter gold nanoparticles. Langmuir 17, 67826786 (2001).Google Scholar
49 Raveendran, P., Fu, J. & Wallen, S.L. Completely green synthesis and stabilization of metal nanoparticles. Journal of the American Chemical Society 125, 1394013941 (2003).Google Scholar
50 Liu, Z. et al. Favored structure of Ag nanoparticles embedded in SiO2 by implantation: single crystal with contracted (111) lattice. Journal of Materials Research 15, 12451247 (2000).Google Scholar
51 Katz, E. & Willner, I. Nanobiotechnology: integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications. Angewandte Chemie, International Edition 43, 60426108 (2004).Google Scholar
52 Beek, W.J.E., Wienk, M.M. & Janssen, R.A. J. Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer. Advanced Materials (Weinheim, Germany) 16, 10091013 (2004).Google Scholar
53 Pagba, C. et al. Hybrid Photoactive Assemblies: Electron Injection from Host-Guest Complexes into Semiconductor Nanoparticles. Journal of the American Chemical Society 126, 98889889 (2004).Google Scholar
54 Tian, S., Liu, J., Zhu, T. & Knoll, W. Polyaniline/gold nanoparticle multilayer films: assembly, properties, and biological applications. Chemistry of Materials 16, 41034108 (2004).Google Scholar
55 Du, J. & Chen, Y. Organic-inorganic hybrid nanoparticles with a complex hollow structure. Angewandte Chemie, International Edition 43, 50845087 (2004).Google Scholar
56 Bhat, R.R., Genzer, J., Chaney, B.N., Sugg, H.W. & Liebmann-Vinson, A. Controlling the assembly of nanoparticles using surface grafted molecular and macromolecular gradients. Nanotechnology 14, 11451152 (2003).Google Scholar
57 Roy, D. & Fendler, J. Reflection and absorption techniques for optical characterization of chemically assembled nanomaterials. Advanced Materials (Weinheim, Germany) 16, 479508 (2004).Google Scholar
58 Ishii, T., Otsuka, H., Kataoka, K. & Nagasaki, Y. Preparation of functionally PEGylated gold nanoparticles with narrow distribution through autoreduction of auric cation by a-Biotinyl-PEG-block-[poly(2-(N, N-dimethylamino)ethyl methacrylate)]. Langmuir 20, 561564 (2004).Google Scholar
59 Willner, I. & Willner, B. Functional nanoparticle architectures for sensoric, optoelectronic, and bioelectronic applications. Pure and Applied Chemistry 74, 17731783 (2002).Google Scholar
60 Bauer, L.A., Birenbaum, N.S. & Meyer, G.J. Biological applications of high aspect ratio nanoparticles. Journal of Materials Chemistry 14, 517526 (2004).Google Scholar
61 West, J.L. & Halas, N.J. Engineered nanomaterials for biophotonics applications: Improving sensing, imaging, and therapeutics. Annual Review of Biomedical Engineering 5, 285292, 4 (2003).Google Scholar
62 Jin, R., Wu, G., Li, Z., Mirkin, C.A. & Schatz, G.C. What controls the melting properties of DNA-linked gold nanoparticle assemblies? Journal of the American Chemical Society 125, 16431654 (2003).Google Scholar
63 Parak, W.J. et al. Conformation of oligonucleotides attached to gold nanocrystals probed by gel electrophoresis. Nano Letters 3, 3336 (2003).Google Scholar
64 Storhoff, J.J., Elghanian, R., Mirkin, C.A. & Letsinger, R.L. Sequence-Dependent Stability of DNA-Modified Gold Nanoparticles. Langmuir 18, 66666670 (2002).Google Scholar
65 Nam, J.M., Stoeva, S.I. & Mirkin, C.A. Bio-Bar-Code-Based DNA Detection with PCR-like Sensitivity. Journal of the American Chemical Society 126, 59325933 (2004).Google Scholar
66 Kraemer, S. et al. Preparation of Protein Gradients through the Controlled Deposition of Protein-Nanoparticle Conjugates onto Functionalized Surfaces. Journal of the American Chemical Society 126, 53885395 (2004).Google Scholar
67 Bruchez, M. Jr., Moronne, M., Gin, P., Weiss, S. & Alivisatos, A.P. Semiconductor nanocrystals as fluorescent biological labels. SCIENCE 281, 20132016 (1998).Google Scholar
68 Nie, S. Water-soluble luminescent quantum dots and biomolecular conjugates thereof and related compositions and methods of use. (Advanced Research and Technology Institute, Inc. USA. 99-US21793(2000029617), 45-20000525. WO. 9-24-1999.Google Scholar
69 Dubertret, B. et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science (Washington, DC, United States) 298, 17591762 (2002).Google Scholar
70 Shavel, A., Gaponik, N. & Eychmueller, A. Efficient UV-Blue Photoluminescing Thiol-Stabilized Water-Soluble Alloyed ZnSe(S) Nanocrystals. Journal of Physical Chemistry B 108, 59055908 (2004).Google Scholar
71 Hai, X. et al. Preparation and a time-resolved fluoroimmunoassay application of new europium fluorescent nanoparticles. Analytical Sciences 20, 245246 (2004).Google Scholar
72 Ye, Z., Tan, M., Wang, G. & Yuan, J. Novel fluorescent europium chelate-doped silica nanoparticles: preparation, characterization and time-resolved fluorometric application. Journal of Materials Chemistry 14, 851856 (2004).Google Scholar
73 Zhao, X., Tapec-Dytioco, R. & Tan, W. Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. Journal of the American Chemical Society 125, 1147411475 (2003).Google Scholar
74 Wang, S., Mamedova, N., Kotov, N.A., Chen, W. & Studer, J. Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates. Nano Letters 2, 817822 (2002).Google Scholar
75 Sano, T., Vajda, S. & Cantor, C.R. Genetic engineering of streptavidin, a versatile affinity tag. Journal of Chromatography, B: Biomedical Sciences and Applications 715, 8591 (1998).Google Scholar
76 Mamedov, A.A., Belov, A., Giersig, M., Mamedova, N.N. & Kotov, N.A. Nanorainbows. Graded semiconductor films from quantum dots. Journal of the American Chemical Society 123, 77387739 (2001).Google Scholar
77 Franzl, T., Klar, T.A., Schietinger, S., Rogach, A.L. & Feldmann, J. Exciton Recycling in Graded Gap Nanocrystal Structures. Nano Letters 4, 15991603 (2004).Google Scholar
78 Schmidt-Mende, L. et al. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. SCIENCE 293, 11191122.Google Scholar
79 Berggren, M., Dodabalapur, A., Slusher, R.E. & Bao, Z. Light amplification in organic thin films using cascade energy transfer. Nature (London) 389, 466469 (1997).Google Scholar
80 Tsang, W.T. A graded-index waveguide separate-confinement laser with very low threshold and a narrow Gaussian beam. Applied Physics Letters 39, 134137 (1981).Google Scholar
81 Rosenthal, S.J. et al. Targeting Cell Surface Receptors with Ligand-Conjugated Nanocrystals. Journal of the American Chemical Society 124, 45864594 (2002).Google Scholar
82 Li, M. & Mann, S. DNA-directed assembly of multifunctional nanoparticle networks using metallic and bioinorganic building blocks. Journal of Materials Chemistry 14, 22602263 (2004).Google Scholar
83 Kaplan, D.L., Davey, M.J. & O'Donnell, M. Mcm4,6,7 Uses a /“Pump in Ring/” Mechanism to Unwind DNA by Steric Exclusion and Actively Translocate along a Duplex. Journal of Biological Chemistry 278, 4917149182 (2003).Google Scholar
84 Shin, J.H., Jiang, Y., Grabowski, B., Hurwitz, J. & Kelman, Z. Substrate Requirements for Duplex DNA Translocation by the Eukaryal and Archaeal Minichromosome Maintenance Helicases. Journal of Biological Chemistry 278, 4905349062 (2003).Google Scholar
85 Li, M., Wong, K.K.W. & Mann, S. Organization of Inorganic Nanoparticles Using Biotin-Streptavidin Connectors. Chemistry of Materials 11, 2326 (1999).Google Scholar
86 Li, M. & Mann, S. DNA-directed assembly of functional nanoparticle networks using metallic and bioinorganic building blocks. Journal of Materials Chemistry 14, 22602263 (2004).Google Scholar
87 Li, M., Schnablegger, H. & Mann, S. Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature (London) 402, 393395 (1999).Google Scholar
88 Foerster, T. Intermolecular energy transference and fluorescence. Ann. Physik 2, 5575 (1948).Google Scholar
89 Chen, S. & Kimura, K. A new strategy for the synthesis of semiconductor-metal hybrid nanocomposites: electrostatic self-assembly of nanoparticles. Chemistry Letters 233234 (1999).Google Scholar
90 Gueroui, Z. & Libchaber, A. Single-Molecule Measurements of Gold-Quenched Quantum Dots. Physical Review Letters 93, 166108–1 (2004).Google Scholar
91 Gao, X., Cui, Y., Levenson, R.M., Chung, L.W.K. & Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology 22, 969976 (2004).Google Scholar
92 Mirkin, C.A., Letsinger, R.L., Mucic, R.C. & Storhoff, J.J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607609 (1996).Google Scholar
93 Park, S., Taton, T.A. & Mirkin, C.A. Array-based electrical detection of DNA with nanoparticle probes. SCIENCE 295, 15031506 (2002).Google Scholar
94 Cao, Y.C., Jin, R. & Mirkin, C.A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science (Washington, DC, United States) 297, 15361540 (2002).Google Scholar
95 Nam, J., Thaxton, C.S. & Mirkin, C.A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. SCIENCE 301, 18841886 (2003).Google Scholar
96 Maxwell, D.J., Taylor, J.R. & Nie, S. Self-assembled nanoparticle probes for recognition and detection of biomolecules. Journal of the American Chemical Society 124, 96069612 (2002).Google Scholar
97 Chan, W.C.W. et al. Luminescent quantum dots for multiplexed biological detection and imaging. Current Opinion in Biotechnology 13, 4046 (2002).Google Scholar
98 Koktysh, D.S. et al. Biomaterials by design: Layer-by-layer assembled ion-selective and biocompatible films of TiO2 nanoshells for neurochemical monitoring. Advanced Functional Materials 12, 255265 (2002).Google Scholar
99 Mamedova, N.N., Wang, S. & Kotov, N.A. Protein-CdTe nanoparticle bioconjugates: Preparation, structure, and resonance energy-transfer. Abstracts of Papers, 224th ACS National Meeting, Boston, MA, United States, August 18-22, 2002 HYS-253 (2002).Google Scholar
100 Mamedova, N.N., Kotov, N.A., Rogach, A.L. & Studer, J. Albumin-CdTe Nanoparticle Bioconjugates: Preparation, Structure, and Interunit Energy Transfer with Antenna Effect. Nano Letters 1, 281286 (2001).Google Scholar
101 Kotov, N.A. Bioconjugates of nanoparticles as radiopharmaceuticals. (The Board of Regents for Oklahoma State University, USA. 2001-US17658(2001091808), 26-20011206. WO. 5-31-2001.Google Scholar
102 Ostrander, J.W., Mamedov, A.A. & Kotov, N.A. Two Modes of Linear Layer-by-Layer Growth of Nanoparticle-Polyelectrolyte Multilayers and Different Interactions in the Layer-by-layer Deposition. Journal of the American Chemical Society 123, 11011110 (2001).Google Scholar
103 Turro, N.J. Modern Molecular Photochemistry. (1978).Google Scholar
104 Dulkeith, E. et al. Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects. Physical Review Letters 89, 203002 (2002).Google Scholar
105 Biswal, S.L. & Gast, A.P. Mechanics of semiflexible chains formed by poly(ethylene glycol)-linked paramagnetic particles. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 68, 021402 (2003).Google Scholar
106 Shimoboji, T., Ding, Z., Stayton, P.S. & Hoffman, A.S. Mechanistic Investigation of Smart Polymer-Protein Conjugates. Bioconjugate Chemistry 12, 314319 (2001).Google Scholar
107 Williams, E., Pividori, M.I., Merkoci, A., Forster, R.J. & Alegret, S. Rapid electrochemical genosensor assay using a streptavidin carbon-polymer biocomposite electrode. Biosensors & Bioelectronics 19, 165175 (2003).Google Scholar
108 Patel, A.B. et al. Influence of Architecture on the Kinetic Stability of Molecular Assemblies. Journal of the American Chemical Society 126, 13181319 (2004).Google Scholar
109 Shimizu, K.T., Woo, W.K., Fisher, B.R., Eisler, H.J. & Bawendi, M.G. Surface-Enhanced Emission from Single Semiconductor Nanocrystals. Physical Review Letters 89, 117401 (2002).Google Scholar
110 Crooker, S.A., Hollingsworth, J.A., Tretiak, S. & Klimov, V.I. Spectrally Resolved Dynamics of Energy Transfer in Quantum-Dot Assemblies: Towards Engineered Energy Flows in Artificial Materials. Physical Review Letters 89, 186802 (2002).Google Scholar
111 Levy, R. et al. Rational and combinatorial design of peptide capping ligands for gold nanoparticles. Journal of the American Chemical Society 126, 1007610084 (2004).Google Scholar
112 Niemeyer, C.M. Semi-synthetic DNA-protein conjugates: novel tools in analytics and nanobiotechnology. Biochemical Society Transactions 32, 5153 (2004).Google Scholar
113 Mokari, T., Rothenberg, E., Popov, I., Costi, R. & Banin, U. Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science (Washington, DC, United States) 304, 17871790 (2004).Google Scholar
114 Talapin, D.V. et al. CdSe and CdSe/CdS Nanorod Solids. Journal of the American Chemical Society 126, 1298412988 (2004).Google Scholar
115 Rogach, A.L. Binary superlattices of nanoparticles: self-assembly leads to /“metamaterials/”. Angewandte Chemie, International Edition 43, 148149 (2003).Google Scholar
116 Aussenegg, F.R. et al. The metal island coated swelling polymer over mirror system (MICSPOMS): a new principle for measuring ionic strength. Sensors and Actuators, B: Chemical B29, 204209 (1995).Google Scholar
117 Schalkhammer, T. et al. The use of metal-island-coated pH-sensitive swelling polymers for biosensor applications. Sensors and Actuators, B: Chemical B24, 166172 (1995).Google Scholar
118 Branca, C. et al. Swelling processes in aqueous polymer solutions by PCS and Raman scattering. Journal of Molecular Structure 482–483, 503507 (1999).Google Scholar
119 Branca, C., Magazu, S., Maisano, G., Migliardo, P. & Villari, V. Conformational distribution of poly(ethylene oxide) in molten phase and in aqueous solution by quasi-elastic and inelastic light scattering. Journal of Physics: Condensed Matter 10, 1014110157 (1998).Google Scholar