Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-08T02:38:07.533Z Has data issue: false hasContentIssue false

Assembly and Characterization of Protein Resistant Planar Bilayers in PDMS Microfluidic Devices

Published online by Cambridge University Press:  15 February 2011

K. Scott Phillips
Affiliation:
Department of ChemistryUniversity of CaliforniaRiverside, California 92521
Quan Cheng
Affiliation:
Department of ChemistryUniversity of CaliforniaRiverside, California 92521
Get access

Abstract

We report a method using vesicle fusion techniques that result in long-standing hydrophilic and protein-resistant PDMS surfaces. The PDMS was oxidized in plasma followed by treatment with various concentrations of phospholipid vesicles to form planar bilayer membranes in the microchannels. Contact angle measurements showed that a freshly oxidized hydrophilic surface began hydrophobic recovery immediately, but PC (phosphatidylcholine) treated surfaces exhibited prolonged hydrophilic properties up to two hours after bilayer modification, and cationic DOPC+ treated surfaces had a contact angle of ∼70. FRAP experiments confirmed fusion of vesicles to form bilayers with lateral mobility. Protein adsorption studies in microchannels showed 2-3 orders of magnitude decrease in fluorescence from non-specific adsorption of dye-conjugated avidin and BSA. Coulombic interaction was found to play an important role in determining the amount of non-specific adsorption. Dehydration of the membranes resulted in increased protein adsorption after rehydration for PC but not for the synthetic lipid DOPC+, which has a positively charged headgroup.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Duffy, D. C.; McDonald, J. C.; Schueller, O. J. A.; Whitesides, G. M. Anal. Chem. 1998, 70, 49744984.Google Scholar
[2] Dou, Y. H.; Bao, N.; Xu, J. J.; Chen, H. Y. Electrophoresis 2002, 23, 35583566.Google Scholar
[3] Pittman, J. L.; Henry, C. S.; Gilman, S. D. Anal. Chem 2003, 75, 361370.Google Scholar
[4] Eteshola, E.; Leckband, D. Sens. & Act. B 2001, 72, 129133.Google Scholar
[5] Hillborg, H.; Ankner, J. F.; Gedde, U. W.; Smith, G. D.; Yasuda, H. K.; Wikstrom, K. Polymer 2000, 41, 68516863.Google Scholar
[6] Kamholz, A. E.; Schilling, E. A.; Yager, P. Biophys. J. 2001, 80, 19671972.Google Scholar
[7] Hu, S. W.; Ren, X. Q.; Bachman, M.; Sims, C. E.; Li, G. P.; Allbritton, N. Anal. Chem. 2002, 74, 41174123.Google Scholar
[8] Brian, A.; McConnell, H.M. Proc. Natl. Acad. Sci. U.S.A. 1984, 81, 61596163.Google Scholar
[9] Ross, E. E.; Spratt, T.; Liu, S. C.; Rozanski, L. J.; O'Brien, D. F.; Saavedra, S. S. Langmuir 2003, 19, 17661774.Google Scholar
[10] Hovis, J. S.; Boxer, S. G. Langmuir 2001, 17, 34003405.Google Scholar
[11] Yang, T. L.; Jung, S. Y.; Mao, H. B.; Cremer, P. S. Anal. Chem. 2001, 73, 165169.Google Scholar
[12] Koppel, D.E. Biophys. J. 1979, 28, 281292.Google Scholar
[13] Ostuni, E.; Grzybowski, B. A.; Mrksich, M.; Roberts, C. S.; Whitesides, G. M. Langmuir 2003, 19, 18611872.Google Scholar
[14] Extrand, C.W. Langmuir 2003, 19, 37933796.Google Scholar
[15] Jackman, R. J.; Duffy, D. C.; Ostuni, E.; Willmore, N. D.; Whitesides, G. M. Analytical Chemistry 1998, 70, 22802287.Google Scholar
[16] Hlady, V.; Buijs, J. Current Opinion in Biotechnology 1996, 7, 7277.Google Scholar