Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T09:01:31.246Z Has data issue: false hasContentIssue false

Aspects of “High Minority-Carrier Lifetime” GaAs on Si Using A Novel SiGe/Ge Buffer

Published online by Cambridge University Press:  25 February 2011

R. Venkatasubramanian
Affiliation:
Research Triangle Institute, Research Triangle Park, NC 27709
J.B. Posthill
Affiliation:
Research Triangle Institute, Research Triangle Park, NC 27709
M.L. Timmons
Affiliation:
Research Triangle Institute, Research Triangle Park, NC 27709
H. Ehsani
Affiliation:
Rensselaer Polytechnic Institute, Troy, NY 12180
S.K. Ghandhi
Affiliation:
Rensselaer Polytechnic Institute, Troy, NY 12180
B.M. Keyes
Affiliation:
Solar Energy Research Institute, Golden, CO 80407
R.K. Ahrenkiel
Affiliation:
Solar Energy Research Institute, Golden, CO 80407
Get access

Abstract

Heteroepitaxial GaAs-on-Si utilizing a Si0.4Ge0.96/Ge buffer, with a hole minority-carrier lifetime as long as ∼ 2.5 nsec is described. This is the longest minority-carrier lifetime in GaAs grown on Si reported to date by any approach. Here we discuss the microstructural aspects of this heteroepitaxial system, including a crossectional transmission electron microscopy (XTEM) study of the interface of the SiGe/Ge buffer and the role of the SiGe layer. An x-ray double crystal diffraction (DCD) study of the GaAs layers is also presented. The SiGe/Ge buffer approach to heteroepitaxial GaAs on Si is a result of two observations: (1) SiGe epitaxial layers grown on Ge are under biaxial compressive stress (from DCD) and (2) dislocations tend to bend over into the Ge substrate (from TEM). These data and a description of the heteroepitaxy of SiGe layers on Ge are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fang, S.F., Adomi, K., Iyer, S., Morkoc, H., Zabel, H., Choi, C., and Otsuka, N., J. Appl. Phys., R31 (1990).Google Scholar
2. Ohmachi, Y., Ohara, T., and Kadota, Y., Proc. 21st IEEE Photovoltaic Specialists Conf., 89 (IEEE, NY, 1990).Google Scholar
3. El-Masry, N.A., Tarn, J.C.L., and Bedair, S.M., Appl. Phys. Lett., 55, 1442 (1989).CrossRefGoogle Scholar
4. Tobin, S.P., Vernon, S.M., and Wolfson, R.G., Annual Report for April 1988-April 1989, SERI Contract No. XL-8-18063-1, June 1989.Google Scholar
5. Venkatasubramanian, R., Timmons, M.L., Posthill, J.B., Keyes, B.M., and Ahrenkiel, R.K., J. Cryst. Growth, 107, 489 (1990).Google Scholar
6. Bartels, W.J. and Nijman, W., J. Cryst. Growth, 44, 518 (1978).CrossRefGoogle Scholar
7. Krishnamoorthy, V., Ribas, P., and Park, R.M., Appl. Phys. Lett., 58, 2000 (1991).CrossRefGoogle Scholar
8. Petruzello, J., Olego, D., Ghandhi, S.K., Taskar, N.R., and Bhat, I., Appl.Phys. Lett., 50, 1423 (1987).CrossRefGoogle Scholar
9. Venkatasubramanian, R., Posthill, J.B., Timmons, M.L., Ehsani, H., Ghandhi, S.K., Keyes, B.M., and Ahrenliel, R.K., To be Published.Google Scholar
10. Baribeau, J.M., Jackman, T.E., Houghton, D.C., Maigne, P., and Denhoff, M.W., J. Appl. Phys., 63, 5738 (1988).Google Scholar
11. Venkatasubramanian, R., Timmons, M.L., Bothra, S., and Borrego, J.M., Mat. Res. Soc. Symp. Proc., 198, 253 (1990).Google Scholar