Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T09:44:31.669Z Has data issue: false hasContentIssue false

Artificially Atomic-scale Ordered Superlattice Alloys for Thermoelectric Applications

Published online by Cambridge University Press:  01 February 2011

S. Cho
Affiliation:
Dept. of Physics & Astronomy, Northwestern University, Evanston, IL 60208
Y. Kim
Affiliation:
Dept. of Physics & Astronomy, Northwestern University, Evanston, IL 60208
A. DiVenere
Affiliation:
Dept. of Physics & Astronomy, Northwestern University, Evanston, IL 60208
G. K. L. Wong
Affiliation:
Dept. of Physics & Astronomy, Northwestern University, Evanston, IL 60208
A. J. Freeman
Affiliation:
Dept. of Physics & Astronomy, Northwestern University, Evanston, IL 60208
J. B. Ketterson
Affiliation:
Dept. of Physics & Astronomy, Northwestern University, Evanston, IL 60208
L. J. Olafsen
Affiliation:
Naval Research Laboratory, Washington, D.C. 20375–5338
I. Vurgaftman
Affiliation:
Naval Research Laboratory, Washington, D.C. 20375–5338
J. R. Meyer
Affiliation:
Naval Research Laboratory, Washington, D.C. 20375–5338
C. A. Hoffman
Affiliation:
Naval Research Laboratory, Washington, D.C. 20375–5338
G. Chen
Affiliation:
Mechanical & Aerospace Engineering Dept., Univ. of California, Los Angeles, CA 90095.
Get access

Abstract

We report artificially atomic-scale ordered superlattice alloy systems, new scheme to pursue high-ZT materials. We have fabricated Bi/Sb superlattice alloys that are artificially ordered on the atomic scale using MBE, confirmed by the presence of XRD superlattice satellites. We have observed that the electronic structure can be modified from semimetal, through zero-gap, to semiconductor by changing the superlattice period and sublayer thicknesses using electrical resistivity, thermopower, and magneto-transport measurements. InSb/Bi superlattice alloys have also been prepared and studied using XRD and thermopower measurements, which shows that their thermoelectric transport properties can be modified in accordance with structural modification. This superlattice alloy scheme gives us one more tool to control and tune the electronic structure and consequently the thermoelectric properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hicks, L. D. and Dresselhaus, M. S., Phys. Rev. B 47, 12727 (1993).Google Scholar
2. Hicks, L. D., Harman, T. C., and Dresselhaus, M. S., Appl. Phys. Lett. 63, 3230 (1993).Google Scholar
3. Harman, T. C., Spears, D. L., and Manfra, M. J., J. Electron. Mat. 25, 1121 (1996).Google Scholar
4. Jain, A. L., Phys. Rev. 114, 1518 (1959).Google Scholar
5. Golin, S., Phys. Rev. 176, 830 (1968).Google Scholar
6. Tichovolski, E. J. and Mavroides, J. G., Solid State Commun. 7, 927 (1969).Google Scholar
7. Oelgart, G., Schneider, G., Kraak, W. and Herrmann, R., Phys. Stat. Sol. (b) 74, K75 (1976).Google Scholar
8. Yim, W. M. and Amith, A., Solid-State Electron. 15, 1141 (1972).Google Scholar
9. Lenoir, B., Cassart, M., Michenaud, J.-P., Scherrer, H. and Scherrer, S., J. Phys. Chem. Solids 57, 89 (1996).Google Scholar
10. Brown, D. M. and Silverman, S. J., Phys. Rev. 136, A290 (1964).Google Scholar
11. Mendez, E. E., Misu, A., and Dresselhaus, M. S., Phys. Rev. B 24, 639 (1981).Google Scholar
12. Lu, M., Zieve, R. J., van Hulst, A., Jaeger, H. M., Rosenbaum, T. F., and Radelaar, S., Phys. Rev. B 53, 1609 (1996).Google Scholar
13. Morelli, D. T., Partin, D. L. and Heremans, J., Semicon. Sci. Technol. 5, S257 (1990).Google Scholar
14. Brown, D. M. and Silverman, S. J., Phys. Rev. 136, A290(1964).Google Scholar
15. Cho, S., DiVenere, A., Wong, G. K., Ketterson, J. B., and Meyer, J. R., Phys. Rev. B59, 10691 (1999).Google Scholar
16. Zilko, J. L. and Greene, J. E., J. Appl. Phys. 51, 1549 (1980).Google Scholar
17. Lee, J. J., Kim, J. D., and Razeghi, M., Appl. Phys. Lett. 70, 3266 (1997).Google Scholar
18. DiVenere, A., Yi, X. J., Hou, C. L., Wang, H. C., Ketterson, J. B., Wong, G. K., and Sou, I. K., Appl. Phys. Lett. 62, 2640 (1993).Google Scholar
19. Cho, S., DiVenere, A., Wong, G. K., Ketterson, J. B., Meyer, J. R., Hong, J. I., Phys. Rev. B 54, 2324 (1998).Google Scholar
20. Vurgaftman, I., Meyer, J. R., Hoffman, C. A., Cho, S., Ketterson, J. B., Faraone, L., Antoszewski, J. and Lindemuth, J. R., J. Electron. Mat. 28, 548 (1999).Google Scholar
21. Vurgaftman, , Meyer, J. R., Hoffman, C. A., Cho, S., DiVenere, A., Wong, G. K., and Ketterson, J. B., J. Phys: Condens. Matter 11, 5157 (1999).Google Scholar