Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-17T13:13:50.697Z Has data issue: false hasContentIssue false

Artificial Atoms of Silicon

Published online by Cambridge University Press:  21 March 2011

Justin D. Holmes
Affiliation:
Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712-1062, Email: [email protected]
Kirk J. Ziegler
Affiliation:
Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712-1062, Email: [email protected]
Keith P. Johnston
Affiliation:
Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712-1062, Email: [email protected]
R. Chris Doty
Affiliation:
Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712-1062, Email: [email protected]
Brian A. Korgel
Affiliation:
Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712-1062, Email: [email protected]
Get access

Abstract

Size-monodisperse, stable 15 Å diameter silicon nanocrystals were synthesized in significant quantities using supercritical octanol as a capping ligand. The silicon nanocrystals exhibit an indirect band gap with discrete electronic transitions in the absorbance and photoluminescence excitation (PLE) spectra. The octanol-capped clusters show efficient blue band-edge photoemission with a luminescence quantum yield of 23 % at room temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For example, see Alivisatos, A. P., Science 271, 933 (1996), and references contained therein.Google Scholar
2. Murray, C. B., Norris, D. J., Bawendi, M. G., J. Am. Chem. Soc. 115, 8706 (1993).Google Scholar
3. Banin, U. et al. J. Chem. Phys. 109, 2306 (1998).Google Scholar
4. Wilson, W. L., Szajowski, P. F., Brus, L. E., Science 262, 1242 (1993); K. A. Littau, P. J. Szajowski, A. J. Muller; A. R. Kortan, L. E. Brus, J. Phys. Chem. 97, 1224 (1993); L. E. Brus, et al., J. A m. Chem. Soc. 117, 2915 (1995); L. Brus, J. Phys. Chem. 98, 3575 (1994).Google Scholar
5. Heath, J. R., Science 258, 1131 (1992); P. E. Batson and J. R. Heath, Phys. Rev. Lett. 71, 911 (1993).Google Scholar
6. Bley, R. A. and Kauzlarich, S. M., J. Am. Chem. Soc. 118 12461 (1996); C.-S. Yang, R. A. Bley, S. M. Kauzlarich, H. W. Lee, G. R. Delgado, J. Am. Chem. Soc. 121, 5191 (1999).Google Scholar
7. Buuren, T. van, Dinh, L. N., Chase, L. L., Siekhaus, W. J., Terminello, L. J., Phys. Rev. Lett. 80, 3803 (1998).Google Scholar
8. Wilcoxon, J. P., Samara, G. A., Appl. Phys. Lett. 74, 3164 (1999).Google Scholar
9. Holmes, J. D., Ziegler, K. J., Johnston, K. P., Doty, R. C., Korgel, B. A., submitted for publication.Google Scholar
10. Herron, N., Calabrese, J. C., Farneth, W. E., Wang, Y., Science 259, 1426 (1993).Google Scholar
11. Sze, S. M., Physics of Semiconductor Devices, (Wiley, New York, 2 nd ed., 1981).Google Scholar
12. Ramakrishna, M. V. and Friesner, R. A., J. Chem. Phys. 96, 873 (1992)Google Scholar
13. , Pretsch, , Clerc, , Seibl, , Simon, Tables of Spectral Data for Structure Determination of Organic Compounds (Springer-Verlag, Berlin, 1942); G. Socrates, Infrared Characteristic Group Frequencies Tables and Charts (John Wiley & Sons, New York, 1994).Google Scholar
14. Wolkin, M. V., Jorne, J., Fauchet, P. M., Allan, G., Delerue, C., Phys. Rev. Lett. 82, 197 (1999).Google Scholar