Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-07T20:18:43.715Z Has data issue: false hasContentIssue false

Area Selective Laser Chemical Vapor Deposition of Diamond

Published online by Cambridge University Press:  15 February 2011

M. Lindstam
Affiliation:
Uppsala University, Institute of Chemistry, Box 531, S-751 21 Uppsala, Sweden.
M. Boman
Affiliation:
Uppsala University, Institute of Chemistry, Box 531, S-751 21 Uppsala, Sweden.
K. Larsson
Affiliation:
Uppsala University, Institute of Chemistry, Box 531, S-751 21 Uppsala, Sweden.
G. Stenberg
Affiliation:
Uppsala University, Institute of Chemistry, Box 531, S-751 21 Uppsala, Sweden.
J.-O. Carlsson
Affiliation:
Uppsala University, Institute of Chemistry, Box 531, S-751 21 Uppsala, Sweden.
Get access

Abstract

High quality diamond spots were deposited on silicon substrates by a hot filament process combined with laser heating. A mixture of CH4(1.8 vol%) and H2was passed over a tantalum filament having a temperature of about 2200 °C. The substrate temperature was varied by small adjustments of the filament power. A focused laser beam was used to locally raise the temperature on the substrate surface. By a proper choice of filament temperature, background substrate temperature and laser induced temperature, isolated islands of polycrystalline diamond could be deposited on the silicon substrate. The deposited diamond spots were characterized by micro-Raman spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and scanning force microscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Valdes, J.L., Mitchell, J. W., Mucha, J.A., and Huggins, H., Applications of DiamondFilms and Related Materials, edited by Tzeng, Y., Yoshikawa, M., Murakawa, M., Feldman, A. (Elsevier Science Publishers B.V., 1991), p. 423.Google Scholar
2 Ramesham, R. and Roppel, T., J. Mater. Res. 7, 1144 (1992).Google Scholar
3 Ma, J. S., Kawarada, H., Yonehara, T., and Hiraki, A., Technology Reports of the Osaka University 40, 63 (1990).Google Scholar
4 Ma, J.S., Yagyu, H. Y., Hiraki, A., Kawarada, H., and Yonehara, T., Thin Solid Films 206, 192 (1991).Google Scholar
5 Ma, J.S., Kawarada, H., Yonehara, T., Suzuki, J.-I., Wei, J., Yokota, Y., and Hiraki, A., Appl. Phys. Lett. 55, 1071 (1989).Google Scholar
6 Miyauchi, S., Kumagai, K., Miyata, K., Nishimura, K., Kobashi, K., and Nakaue, A., Surface and Coatings Technology 47, 465 (1991).Google Scholar
7 DeNatale, J.F., Flintoff, J.F., and Harker, A.B., J. Appl. Phys. 68, 4014 (1990).Google Scholar
8 Ramesham, R., SPIE 1759 Diamond Optics V (1992).Google Scholar
9 Ramesham, R., Thin Solid Films 229, 44 (1993).Google Scholar
10 Chapliev, N.I., Konov, V.I., Pimenov, S.M., Prokhorov, A.M., and Smolin, A.A., Applications of Diamond Films and Related Materials, edited by Tzeng, Y., Yoshikawa, M., Murakawa, M., Feldman, A. (Elsevier Science Publishers B.V., 1991), p. 417.Google Scholar
11 Hirabayashi, K., Ikoma, K., Taniguchi, Y. and Iwasaki-Kurihara, N., Science and Technology of New Diamond, edited by Sato, S., Fukunuga, O., and Yoshikawa, M. (KTK Scientific Publishers/Terra Scientific Publishing Company, 1990), p. 155.Google Scholar
12 Yu, S., Jin, Z.-S., Lu, X.-Y and Zou, G.-T., Chinese Science Bulletin 36, 1438 (1991).Google Scholar
13 Hänni, W., Muller, C., Binggeli, M., Hintermann, H. E., Krebs, P. and Grisel, A., Thin Solid Films 236, 87 (1993).Google Scholar
14 Lin, S.J., Lee, S., Hwang, J. and Lin, T.S., J. Electrochem. Soc. 139, 3255 (1992).Google Scholar
15 Hirabayashi, K., Taniguchi, Y, Takamutso, O., Ikeda, T., Ikoma, K. and Iwasaki-Kurihara, N., Appl. Phys. Lett. 53, 1815 (1988).Google Scholar
16 Ramesham, R., Roppel, T., Ellis, C., Jaworske, D.A. and Baugh, W., J. Mater. Res. 6, 1278 (1991).Google Scholar
17 Davidsson, J.L., Ellis, C. and Ramesham, R., J. Electron. Mater. 18, 711 (1989).Google Scholar
18 Inoue, T., Tashibana, T., Kumagai, K., Miyata, K., Nishimura, K., Kobashi, K. and Nakaue, A., J. Appl. Phys. 67, 7329 (1990).Google Scholar
19 Ramesham, R., Roppel, T and Ellis, C. and Rose, M.F., J. Electrochem. Soc. 138, 1706 (1991).Google Scholar
20 Ramesham, R. and Ellis, C., Wide Band Gap Semiconductors, edited T.D. Moustakas, MSR Proc. 242, 69 (1992).Google Scholar
21 May, P. W., Rego, C. A., Trevor, C. G., Williamson, E. C., Ashfold, M. N. R., Rosser, K. N. and Everitt, N. M., Diamond Rel. Mat. 3, 1375 (1994).Google Scholar
22 Konov, V.I., Pimenov, S.M., Prokhorov, A. M., Smolin, A.A., and Chapliev, N.I., Sov. J. Quantum Electron. 21, 993 (1991).Google Scholar
23 Konov, V.I., Kononenko, T.V., Pimenov, S.M., Smolin, A.A., and Chapliev, N.I., Sov. J. Quantum Electron. 21, 1112 (1991).Google Scholar
24 Lax, M., J. Appl. Phys., 48, 4357 (1977).Google Scholar
25 Baeri, P., Campanisano, S.U., Foti, G. and Rimini, E., J. Appl. Phys. 50, 788 (1979).Google Scholar