Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-17T17:04:01.182Z Has data issue: false hasContentIssue false

Aragonite growth in water-alcohol mixtures: Classical or nonclassical crystallization?

Published online by Cambridge University Press:  21 May 2012

K. K. Sand*
Affiliation:
Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
J. D. Rodriguez-Blanco
Affiliation:
School of Earth and Environment, University of Leeds, United Kingdom.
E. Makovicky
Affiliation:
Department for Geography and Geology, University of Copenhagen, Denmark.
L. G. Benning
Affiliation:
School of Earth and Environment, University of Leeds, United Kingdom.
S. L. S. Stipp
Affiliation:
Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
Get access

Abstract

Aragonite can grow from calcium carbonate solutions as the favored phase, at ambient conditions, in the presence of 1:1 volume % water:ethanol. Its form is single and branched needles, with pseudohexagonal symmetry. Morphological evidence demonstrates that all precipitated aragonite is twinned. The recently popularized hypothesis of nonclassical growth by nanocrystal self assembly cannot describe the aragonite crystal form. Rather, its formation is effectively described as spherulitic growth, i.e. by classical crystal growth theory.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bischoff, J. L., and Fyfe, W. S., Am J Sci. 266, 65 (1968).Google Scholar
2. Ogino, T., Suzuki, T., and Sawada, K., Geochim. Cosmochim. Ac. 51, 2757 (1987).Google Scholar
3. Dickinson, S. R., and McGrath, K. M., J. Mater. Chem. 13, 928 (2003).Google Scholar
4. Seo, K.S., Han, C., Wee, J. H., Park, J. K., and Ahn, J. W., J. Cryst. Growth. 276, 680 (2005).Google Scholar
5. Bragg, W. L., P. Roy. So. Lond. a Mat. 76, 425 (1925).Google Scholar
6. Krauss, C., Chateigner, D., and Gil, O., Cryst. Growth Des. 8, 4378 (2008).Google Scholar
7. Cölfen, H., Curr. Opin. Colloid In. 8, 23 (2003).Google Scholar
8. Cölfen, H., and Mann, S., Angew. Chem. Int. Edit. 42, 2350 (2003).Google Scholar
9. Andreassen, J. P., J. Cryst. Growth. 274, 256 (2005).Google Scholar
10. Kulak, A. N., Iddon, P., Li, Y. T., Armes, S. P., Cölfen, H., Paris, O., Wilson, R. M., and Meldrum, F. C., Am. Chem. Soc. 129, 3729 (2007).Google Scholar
11. Gebauer, D., Volkel, A., and Colfen, H., Science. 322,1819 (2008).Google Scholar
12. Beck, R., and Andreassen, J. P., Cryst. Growth Des. 10, 2934 (2010).Google Scholar
13. Rodriguez-Blanco, J. D., Shaw, S., Benning, L. G.. Nanoscale, 3, 265–271 (2011).Google Scholar
14. Gehrke, N., Colfen, H., Pinna, N., Antonietti, M., and Nassif, N., Cryst. Growth Des, 5, 1317 (2005).Google Scholar
15. Wohlrab, S., Pinna, N., Antonietti, M., and Colfen, H., Chem. Eur. J, 11, 2903 (2005).Google Scholar
16. Chen, S. F., Yu, S. H., Jiang, J., Li, F. Q., and Liu, Y. K., Chem. Mater. 18, 115 (2006).Google Scholar
17. Zhou, G. T., Yao, Q. Z., Ni, J., and Jin, G., Am. Min. 94, 293 (2009).Google Scholar
18. Shi, S. X., Su, Z. Q., Wei, H., and Chen, X. N., J Appl. Polym. Sci. 117, 3308 (2010).Google Scholar
19. Zhang, Q., Ren, L., Sheng, Y., Ji, Y., and Fu, J., Mater. Chem. Phys. 122, 156 (2010).Google Scholar
20. Sand, K. K., Rodriques-Blanco, J. D., Makovicky, E., Benning, L., S Stipp, S. L., Cryst. Growth Des, 12, 845 (2012).Google Scholar
21. Ramdohr, P., and Strunz, H., Klockmann, Lehrbuch der Mineralogie. Ferdinand Enke Verlag: Stuttgart, (1978).Google Scholar
22. Liu, F. L., Gao, Y. Y.; Zhao, S. Q., Shen, Q. A.; Su, Y. L., and Wang, D. J., Chem. Com. 46, 4607 (2010).Google Scholar
23. Pilati, T., Demartin, F., and Gramaccioli, C. M., Acta Crystallogr B, 54, 515 (1998).Google Scholar
24. Sunagawa, I., B. Mineral. 104, 81 (1981).Google Scholar
25. Fernandez-Diaz, L., Putnis, A., Prieto, M., and Putnis, C. V., J. Sediment. Res. 66, 482 (1996).Google Scholar
26. Imai, H., In Biomineralization I, edited by Naka, K., Springer Berlin, Heidelberg. 270, 43–7 (2007).Google Scholar
27. Andreassen, J. P., Flaten, E. M., Beck, R., and Lewis, A. E., Engineering Research and Design, 88, 1163 (2010).Google Scholar
28. Granasy, L., Pusztai, T., Tegze, G., Warren, J. A., and Douglas, J. F., Phys. Rev. E. 72, (2005).Google Scholar