Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-17T19:59:13.579Z Has data issue: false hasContentIssue false

Applications of Nonlinear Optical Thin Films

Published online by Cambridge University Press:  15 February 2011

S. R. J. Brueck
Affiliation:
Center for High Technology Materials
R. A. Myers
Affiliation:
University of New Mexico, Albuquerque, NM 87131
Get access

Abstract

Many approaches to fabrication of nonlinear optical and electro-optical thin-film materials are currently under investigation including: epitaxial inorganic films; polycrystalline inorganic materials; organic nonlinear moieties poled in polymer hosts; and poled amorphous inorganic materials. For each of these approaches there are a variety of characteristics and constraints that impact the ultimate uses. These are discussed in the context of signal processing and transmission applications such as optical interconnects and integrated optics. Almost universally, integration with the Si materials and processing that dominates current computer technology, or with the III-V materials that dominate optoelectronics technology, are major factors in the attractiveness of a technology direction. A relatively recent development is the observation of a strong nonlinearity in fused silica, χ(2) ∼ 1 pm/V, poled by modest temperature and electric-field stress. Temperature-dependent dynamic and spectroscopic measurements suggest that mobile-ion species such as Na+, as well as non-bridging oxygen bond re-orientation under a strong field, play a role in the nonlinearity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Fejer, M. M., Magel, G. A., Jundt, D. H., and Byer, R. L., IEEE Jour. of Quantum Electron. QE28, 2631 (1992).Google Scholar
2 Eich, M., Bjorklund, G. C. and Yoon, D. Y., Polym. for Adv. Tech. 1, 189 (1990).Google Scholar
3 Girton, D. G., Kwaitkowski, S. L., Lipscomb, G. F. and Lytel, R. S., Appl. Phys. Lett. 58, 1730 (1991).Google Scholar
4 Lytel, R., Lipscomb, G. F., Kenney, J. T. and Binkley, E. S., Large Scale Integration of Electro-optic Polymer Waveguides, in Polymers for Lightwave and Integrated Optics: Technology and Applications, Hornak, L. A., ed. (Marcel Dekker, 1992).Google Scholar
5 Feldmann, M. and Henaff, J., Surface Acoustic Waves for Signal Processing (Artech House, Boston, 1989)Google Scholar
6 Österberg, U. and Margulis, W., Opt. Lett. 11, 516 (1986).CrossRefGoogle Scholar
7 Myers, R. A., Mukherjee, N. and Brueck, S. R. J., Opt. Lett. 16, 1732 (1991).Google Scholar
8 Kazansky, P. G., Kamal, A. and Russell, P. St. J., Opt. Lett. 18, 363 (1993)Google Scholar
9 Tanaka, K., Kashima, K., Hirao, K., Soga, N., Mito, A. and Nasu, H., Jpn. J. Appl. Phys. 32 L843-5, 1993.CrossRefGoogle Scholar
10 Okada, A., Ishii, K., Mito, K. and Sasaki, K., Appl. Phys. Lett. 60, 2853 (1992).Google Scholar
11 Okada, A., Ishii, K., Mito, K. and Sasaki, K., J. Appl. Phys. 74, 531 (1993).Google Scholar
12 Izawa, K., Okamoto, N., and Sugihara, O., Jpn. J. Appl. Phys. 32, 807811 (1993).Google Scholar
13 Kazansky, P. G., Kamal, A. and Russell, P. St. J., Opt. Lett. 18, 1141 (1993).Google Scholar
14. Nasu, H., Okamoto, H., Mito, A., Matsuoka, J. and Kamiya, K., Jpn. J. Appl. Phys. 32, L406-7 (1993).Google Scholar
15 Mukherjee, N., Myers, R. A. and Brueck, S. R. J., Jour. Opt. Soc. Amer. B11, 665 (1994).Google Scholar
16 Myers, R. A., Mukherjee, N. and Brueck, S. R. J., SPIE 2044, Photosensitivity and Self-Organization in Optical Fibers and Waveguides, 2 (1993).Google Scholar
17 Kashyap, R., Veldhuis, G., Rogers, D. C., and Mckee, P. F., Appl. Phys. Lett. 64, 1332 (1994).Google Scholar
18 Liu, A. C., Digonnet, M. J. F. and Kino, G. S., Opt. Lett. 19, 466 (1994).Google Scholar
19 Myuller, R. L., Electrical Conductivity of Vitreous Substances, Consultants Bureau, N.Y. 1971.Google Scholar
20 Levenson, M. D., IEEE J. Quantum Electron. QE–10, 110 (1974).Google Scholar
21 Stagg, J. P., Appl. Phys. Lett. 31, 532 (1977).Google Scholar