Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T02:00:24.530Z Has data issue: false hasContentIssue false

Applications of CoSi2 to VLSI and ULSI

Published online by Cambridge University Press:  03 September 2012

S. P. Murarka*
Affiliation:
Center for Integrated Electronics, Rensselaer Polytechnic Institute Troy, NY 12180
Get access

Abstract

Silicides have found application as high conductivity, high temperature, and corrosion resistance materials that form good electrical contacts to silicon and good low resistivity cladding on polysilicon films used as gate metal. Of various silicides investigated in past CoSi2 offers several advantages including lowest resistivity, self-aligned formation, low lattice mismatch with silicon, stability in presence of dopants and on SiO2, Si3N4, or Sioxynitrides, and reliability to process temperatures ≤900°C even when used in thicknesses as thin as 50-60 nm. Thus, CoSi2 has found an application in VLSI and ULSI. In this paper, the properties, formation and processing, reliability, and applicability of CoSi2 will be reviewed. It will be shown that CoSi2 is only silicide that offers properties and reliability for continued use in sub-0.25 pm VLSI and ULSI integrated circuits.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gurp, G. J. van and Langereis, C., J. Appl. Phys. 46, 4301 (1975), also see G. J. van Gurp, J. Appl. Phys. 46, 4308 (1975).Google Scholar
2. Murarka, S. P., J. Vac. Sci. Technol. 17, 775 (1980).CrossRefGoogle Scholar
3. Ishiwara, H., Saitoh, S., and Hikosaka, K., Jpn. J. Appl. Phys. 20, 843 (1981).Google Scholar
4. Levinstein, H. J., Murarka, S. P., and Sinha, A. K., U.S. Patent No. 4378628 (5 April 1983).Google Scholar
5. Murarka, S. P., Fraser, D. B., Sinha, A. K., Levinstein, H. J., Lloyd, E. J., Liu, R., Williams, D. S., and Hillenius, S. J., IEEE Trans. Electron Devices ED–34, 2108 (1987).Google Scholar
6. Hensel, J. C., Levi, A. F. J., Tung, R. T., and Gibson, J. M., Appl. Phys. Lett. 47, 151 (1985).Google Scholar
7. Hunt, B. D., Lewis, N., Hall, E. L., Turner, L. C., Schowalter, L. J., Okamoto, M., and Hashimoto, S., Mat. Res. Soc. Symp. Proc. 56, 151 (1986).Google Scholar
8. Jimenez, J. R., Schowalter, L. J., Hsiung, L. M., Rajan, K., Hashimoto, S., Thompson, R. D., and Iyer, S. S., App. Phys. Lett 57, 1328 (1990).Google Scholar
9. Tung, R. T., Bean, J. C., Gibson, J. M., Poare, J. M., and Jacobson, D. C., Thin Solid Films 93, 77 (1982).CrossRefGoogle Scholar
10. Lepseller, M. P. and Andrews, J. M., in “Ohmic Contacts to Semiconductors”, edited by Schwartz, B. (Electrochemical Society, Princeton, NJ, 1969) p. 159.Google Scholar
11. Murarka, S. P., J. Vac. Sci. Technol. B4 1325 (1986).CrossRefGoogle Scholar
12. Berti, A. and Bolkhovsky, V., Proc. VMIC, Santa Clara, June (1992).Google Scholar
13. Yamazaki, T.. Goto, K., Fukano, T., Nara, Y., Sugii, T., and Ito, T., in Proc. of Int. IEDM (1993) (IEEE, NY Cat. #93 CH3361-3), p. 906.Google Scholar
14. Maex, K., Materials Science and Engineering R11, 53 (1993).Google Scholar
15. Murarka, S. P., Thin Solid Films 140, 35 (1986).Google Scholar
16. Murarka, S. P. and Vaidya, S., J. Appl. Phys. 56, 3404 (1984). Also see S. Vaidya, S. P. Murarka and T. T. Sheng, J. Appl. Phys. Z8, 971 (1985).CrossRefGoogle Scholar
17. Vossen, J., Thomas, J. H. III, Maa, J.-S., and O'Neill, J. J., J. Vac. Sci. Technol. A2 212 (1984).Google Scholar
18. See “Chemical Surface Preparation, Passivation, and Cleaning for Semiconductor Growth and Processing”, Eds. Nemanich, R. J., Helms, C. R., Hirose, M., and Rubloff, G. W., MRS Proc. Vol. 259, (MRS, Pittsburgh, 1992).Google Scholar
19. Wei, C. S., Fraser, D. B., Dass, M. Lawrence, and Brat, T., Proc. VMIC, June 1990 (IEEE Cat. #90THO325-I), p. 233.Google Scholar
20. Clavenger, L. and Harper, J. M. E., IBM, Yorktown Heights, Private Communication.Google Scholar
21. Lawrence, M., Dass, A., Fraser, D. B., and Wei, S.-S., Appl. Phys. Lett. 58, 1308 (1991).Google Scholar
22. Osburn, C. M., J. Electronic Mater. 19, 67 (1989).CrossRefGoogle Scholar
23. Murarka, S. P. and Williams, D. S., J. Vac. Sci.. Technol. B5, 1674 (1987).Google Scholar
24. Ko, S.-H., Murarka, S. P., and Sitaram, A. R., J. Appl. Phys. 71, 5892 (1992).Google Scholar
25. Tung, R. T. and Gibson, J. M., J. Vac. Sci. Technol, A3, 987 (1985).Google Scholar
26. Farooq, M. A., Murarka, S. P., Chang, C. C., and Baiocchi, F. A., J. Appl. Phys. 65, 3017 (1989).Google Scholar
27. Shy, Y.-T., Murarka, S. P., Sitaram, A. R., Ding, P.-J., and Lanford, W. A., Mat. Res. Soc. Symp. Proc. 260, 151 (1992).Google Scholar
28. Xiao, Q. F., Jimenez, J. R., Schowalter, L. J., Luo, L., Mitchell, T. E., and Gibson, W. M., Mat. Res. Soc. Symp. Proc. 220, 519 (1991).Google Scholar
29. Luo, L., Meunchausen, R. E., Maggiore, C. J., Jimenez, J. R., and Schowalter, L. J., Appl. Phys. Lett. 58, 419 (1991).Google Scholar
30. Yokoyama, N., Ohnishi, T., Odani, K., Onodera, H., and Abe, M., IEEE Trans. Electron Devices 29, 1541 (1982).Google Scholar
31. Wu, Z.-C., Arakawa, E. T., Jimenez, J. R., and Schowalter, L. J., J. Appl. Phys. 71, 5601 (1992).CrossRefGoogle Scholar
32. Wu, Z.-C., Arakawa, E. T., Jimenez, J. R., and Schowalter, L. J., Phys. Rev. B 47, 4356 (1993).Google Scholar
33. Schowalter, L. J., Jimenez, J. R., Hsiung, L. M., Rajan, K., Hashimoto, S., Thompson, R. D., and Iyer, S. S., J. Crystal Growth 111, 948 (1991).Google Scholar
34. Jimenez, J. R., Schowalter, L. J., and Fathauer, R. W., to be published.Google Scholar