Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T16:54:19.122Z Has data issue: false hasContentIssue false

The Application of Reactive Hot Compaction and In-Situ Coating Techniques to Intermetallic Matrix Composites

Published online by Cambridge University Press:  25 February 2011

H. Doty
Affiliation:
University of Florida, Dept. of Materials Science and Engineering, Gainesville, Florida
M. Somerday
Affiliation:
University of Florida, Dept. of Materials Science and Engineering, Gainesville, Florida
R. Abbaschian
Affiliation:
University of Florida, Dept. of Materials Science and Engineering, Gainesville, Florida
Get access

Abstract

An overview of the application of the reactive hot compaction (RHC) process to fabricate various intermetallics such as silicides and aluminides is presented. Specific examples with the in-situ formation of diffusion barrier coatings on refractory metal reinforcements during RHC are also given. The processing involves blending the elemental powders with pre-treated refractory metal filaments and reactively synthesizing the mixture at elevated temperatures. During this process, the treated surfaces of the filaments react with one of the components (e.g. Al for aluminides or Si for silicides) to form in-situ a protective surface coating. The important influence of the RHC reaction sequence and rate on the consolidation of the composite are discussed. Finally, the fracture toughness of the composites are related to the various toughening mechanisms, with special emphasis on the role of the interfacial layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hahn, K.H. and Vedula, K., Scripta Met. 23, 712 (1989).Google Scholar
2. Hack, J.E., Brzeski, J.M. and Darolia, R., Scripta Met. 27, 12591263 (1992).Google Scholar
3. Larhman, D.F., Field, R.D. and Darolia, R., (Mat. Res. Soc. Symp. Proc. 213, Boston, MA, 1991) pp. 603607.Google Scholar
4. Barinov, S.M. and Kotenev, V.I., Izvestiya Akademii Nauk SSSR. Metally. 1, 9497 (1986).Google Scholar
5. Petrovic, J.J. and Honnell, R.E.: Ceram. Eng. Sci. Proc., 11, 734744 (1990).CrossRefGoogle Scholar
6. Schwarz, R.B., Srinivasan, S.R., Petrovic, J.J., and Maggiore, C.J., Mat. Sci. Eng. A 155, 7583 (1992).Google Scholar
7. Lu, L., Kim, Y.S., Gokhale, A.B. and Abbaschian, R., Mat. Res. Soc. Proc. 194, 7987 (1990).Google Scholar
8. Xiao, L. and Abbaschian, R., to be published in Met. Trans.Google Scholar
9. Evans, A.G., He, M.Y. and Hutchison, J.W., J. Am. Ceram. Soc. 72 (12), 23002303 (1989).Google Scholar
10. Evans, A.G., J. Am. Ceram. Soc. 73 (2), 187206 (1990).CrossRefGoogle Scholar
11. Mataga, P.A., Acta. Metall. 37 (12), 33493359 (1989).Google Scholar
12. Xiao, L. and Abbaschian, R., Met. Trans. A. 24A, 403415 (1993).Google Scholar
13. Evans, A.G. and Marshall, D.B., Acta Metall. 37 (10), 25672583 (1989).CrossRefGoogle Scholar
14. Sigl, L.S., Mataga, PA., Dalgleish, B.J., McMeeking, R.M. and Evans, A.G., Acta. Metall. 36 (4), 945953 (1988).Google Scholar
15. Nourbakhsh, S., Margolin, H. and Liang, F.L., in Solidification of Metal Matrix Composites, edited by Rohatgi, P. (TMS, 1990), pp. 103114.Google Scholar
16. Gokhale, A.B., Lu, L. and Abbaschian, R., in Solidification of Metal Matrix Composites, edited by Rohatgi, P. (TMS, 1990), pp. 115131.Google Scholar
17. Valencia, J.J., McCullough, C., Rosier, J., Levi, C.G. and Mehrabian, R., in Solidification of Metal Matrix Composites, edited by Rohatgi, P. (TMS, 1990), pp. 133150.Google Scholar
18. Johnson, D.R., Joslin, S.M., Oliver, B.F., Noebe, R.D. and Wittenberger, J.D., (Mat. Res. Soc. Symp. 273, San Francisco, CA, 1992) pp. 8792.Google Scholar
19. Heredia, F.E. and Valencia, J.J., (Mat. Res. Soc. Symp. Proc. 273, San Francisco, CA, 1992) pp. 197204.Google Scholar
20. Misra, A., Noebe, R.D. and Gibala, R., Mat. Res. Soc. Symp. Proc., 273, 205210 (1992).CrossRefGoogle Scholar
21. Bewlay, B.P., Chang, K-M., Sutliff, J.A. and Jackson, M.R., Mat. Res. Soc. Symp. Proc., 273, 417423 (1992).Google Scholar
22. Kumar, K.S., Mannan, S.K. and Viswanadham, R.K., Acta Metall. Mater. 40 (6), 12011222 (1992).Google Scholar
23. Huang, B., Vallone, J., Klein, C.F. and Luton, M.J., (Mat. Res. Soc. Symp. Proc. 273, San FRancisco, CA, 1992) pp. 171176.Google Scholar
24. Frankhouser, W.L., Brendley, K.W., Kieszek, M.C. and Sullivan, S.T., Gasless Combustion Synthesis of Refractory Compounds. (Noyes Publications, Park Ridge, NJ, 1985), p. 10.Google Scholar
25. Deevi, S.C., Mat. Sci. Eng. A 149, 241251 (1992).Google Scholar
26. Bhaduri, S.B., Scripta. Met. 27, 12771281 (1992).Google Scholar
27. Azatyan, T.S., Maltsev, V.M., Merzhanov, A.G. and Seznev, V.A., Comb. Expl. Shock Waves. 15, 35 (1979).Google Scholar
28. Sarkisyan, A.R., Dolukhanyan, S.K. and Borvinskya, I.P., Comb. Expl. Shock Waves. 15, 95 (1979).Google Scholar
29. Barmak, K., Coffey, K.R., Rudman, D.A. and Foner, S., J. Appi. Phys. 67 (12), 73137322 (1990).Google Scholar
30. Henager, C.H. Jr., Brimhall, J.L., Vetrano, J.S. and Hirth, J.P., (Mat.Res.Soc.Symp.Proc. 273, San Francisco, CA, 1992)pp. 281287.Google Scholar
31. Alman, D.E. and Stoloff, N.S., Scripta Metall. Mater., 28(12), 15251530 (1993).Google Scholar
32. Doty, H. and Abbaschian, R., (ICCM-9 Conf. Proc. 1, Madrid, Spain, 1993) pp.Google Scholar
33. German, R.M. and Bose, A., Mat. Sci. Eng. A107, 107116, (1989).Google Scholar
34. Moll, J.H., Yolton, C.F. and McTiernan, B.J., Int. J.P. Met. 26 (2), 149155 (1990).Google Scholar
35. Subrahmanyam, J. and Vijayakumar, M., J. Mater. Sci. 27, (1992).Google Scholar
36. Alman, D.E. and Stoloff, N.S., Int. J.P. Met. 27 (1), 2941 (1991).Google Scholar
37. Lu, L., Master's Thesis, University of Florida, 1991.Google Scholar
38. Bose, A., Moore, B., German, R.M. and Stoloff, N.S., J. of Metals. 9, 1417 (1988).Google Scholar
39. Kissinger, H.E., Analytical Chemistry. 29, 169–177 (1957).Google Scholar
40. Philpot, K.A., Munir, Z.A. and Holt, J.B., J. Mat. Sci. 22, 159169 (1987).Google Scholar
41. Silva, A. Costa e and Kaufman, M.J., to be published in Proceedings and Fabrication of Advanced Materials for High Temperature Applications 111, Ravi, V.A. and Srivatsan, T.S. eds.Google Scholar
42. Anton, D.L. (Mat. Res. Soc. Symp. Proc. 120, San Francisco, CA, 1988) pp. 5764.Google Scholar
43. Bieler, T.R., Noebe, R.D., Whittenberger, J.D. and Luton, J.J., (Mat. Res. Soc. Symp. Proc. 273, San Francisco, CA, 1992) pp.165170.Google Scholar
44. Jayashankar, S. and Kaufman, M.J., J. Mater. Res. 8, 14281441 (1993).Google Scholar
45. Maloy, Stuart A., Lewandowski, John J., and Heuer, Arthur H., Mat. Sci. Eng. A 155, 159163 (1992).Google Scholar
46. Silva, A. Costa e and Kaufman, M.J., Scripta Met. 29, 11411145 (1993).Google Scholar
47. Srinivasan, S.R. and Schwarz, R.B., (Met. Pow. Ind. Fed. Conf. Proc. 7, San Francisco, CA, 1992)pp. 345358.Google Scholar
48. Yang, J.M., Jeng, S.M., (Mat. Res. Soc. Symp. Proc. 194, San Francisco, CA, 1990)pp. 139146.Google Scholar
49. Bhattacharya, Arun K. and Petrovic, John J., J. Am. Ceram. Soc. 74, 27002703 (1991).Google Scholar
50. Gac, Frank D. and Petrovic, John J., J. Am. Cer. Soc. 68, C200 (1985).CrossRefGoogle Scholar
51. Gibbs, W.S., Petrovic, J.J., and Honnell, R.E., Ceram. Eng. Sci. Proc. 8, 645648 (1987).Google Scholar
52. Xiao, L. and Abbaschian, R., Mat. Sci. Eng. A 155, 135145 (1992).Google Scholar
53. Suzuki, M., Nutt, S.R., and Aiken, R.M. Jr., Mat. Sci. Eng. A 162, 7382 (1993).Google Scholar
54. Sadananda, K., Feng, C.R., Jones, H., and Petrovic, J.J., Mat. Sci. Eng. A 155, 227239 (1992).Google Scholar
55. Bose, S., Mat. Sci. Eng. A 155, 217225 (1992).Google Scholar
56. Widerhorn, S.M., Gettings, R.J., Roberts, D.E., Ostertag, C., and Petrovic, J.J., Mat. Sci. Eng. A 155, 209215 (1992).Google Scholar
57. Petrovic, J.J., Bhattacharya, A.K., Honnell, R.E., Mitchell, T.E., Wade, R.K., and McClellan, K.J., Mat. Sci. Eng. A 155, 259266 (1992).Google Scholar
58. Bhattacharya, Arun K. and Petrovic, John J., J. Am. Cer. Soc. 75, 2327 (1992).Google Scholar
59. Petrovic, J.J., Honnell, R.E., Mitchell, T.E., Wade, R.K., and McClellan, K.J., Ceram. Eng. Sci. Proc. 12, 16331642 (1991).Google Scholar
60. Shaw, L. and Abbaschian, R., submitted to Acta metall. mater.Google Scholar
61. Xiao, L., Kim, Y.S., Abbaschian, R., and Hecht, R.J., Mat. Sci. Eng. A 144, 277285 (1991).Google Scholar
62. Kajuch, Jan, Rigney, Joseph D., and Lewandowski, John J., Mat. Sci. Eng. A 155, 5965 (1992).Google Scholar
63. Xiao, L. and Abbaschian, R., Met. Trans. 23A, 110 (1992).Google Scholar
64. Xiao, L. and Abbaschian, R., unpublished work.Google Scholar
65. Maloney, Michael J. and Hecht, Ralph J., Mat. Sci. Eng. AI 55, 1931 (1992).Google Scholar