Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T17:32:24.109Z Has data issue: false hasContentIssue false

Application of Fractals and Kinetic Equation in Modelling Cluster and Ultrafine Particle Size Distributions

Published online by Cambridge University Press:  15 February 2011

J. Chaiken*
Affiliation:
Department of Chemistry and the Solid State Science and Technology Program, Syracuse University, Syracuse, New York 13244-4100
Jerry Goodisman
Affiliation:
Department of Chemistry and the Solid State Science and Technology Program, Syracuse University, Syracuse, New York 13244-4100
*
*author to whom correspondence should be addressed.
Get access

Abstract

We briefly describe a model which seems to be applicable to a variety of coalescence growth systems. Spanning cluster growth, particle growth and hillock formation in thin metal films, this model is based on the Smoluchowski kinetic equations and fractals. We describe how this model has been able to suggest the effect of translational to internal energy conversion in coalescing systems in determining the shape of particle size distributions. We also suggest how this model can be employed to account for the behavior of hillocks in supersaturated alloy films under thermal annealing conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. see various chapters in Laser Chemistry of Organometallics. edited by Chaiken, J. ACS Symposium Series Vol. 530, (American Chemical Society, Washington, D.C. 1993) or see J. Chaiken, M. J. Casey, M. Villarica, J. Phys. Chem. 96, (1992)3183-3186.Google Scholar
2. Das, Puma and Metiu, H., J. Phys. Chem., 89, 46804687(1985).Google Scholar
3. Neeves, A. E. and Bimboim, Meyer H., Opt. Lett., 13, 10871089(1988), Eiichi Hanamura, Phys. Rev. B. 37, 1273-1279(1988).Google Scholar
4. Aspnes, D. E., Thin Solid Films, 89, 249262(1982).Google Scholar
5. Mader, S., Thin Solid Films, 2, 3541(1964), S. Mader, H. Widmer, F. M. d'Heurle and A. S. Nowick, Appl. Phys. Lett., 3, 201(1963).Google Scholar
6. Buhrman, R. A. and Granqvist, C. G. J. Appl. Phys. 47, 22202222(1976), C. G. Granquist and R. A. Buhrman, Solid State Commun. 18, 123-126(1976) and J. Catal. 42, 477-479(1976)Google Scholar
7. Cannon, W. R., Danforth, S.C., Flint, J. H., Haggarty, J. S. and Marra, R. A., J. Am. Cer. Soc. 65, 324329(1982), W. R. Cannon, S.C. Danforth, J. H. Flint, J. S. Haggarty and R. A. Marra, J. Am. Cer. Soc. 65, 329-335(1982).Google Scholar
8. Zurek, W. H. and Schieve, William C., J. Chem. Phys. 68, 840846(1978), W. H. Zurek and William C. Schieve, J. Phys. Chem. 84, 1479-1482(1980).Google Scholar
9. Villarica, M., Casey, M. J., Goodisman, J., Chaiken, J., J. Chem. Phys. 98 (1993) 46104625.Google Scholar
10. Smoluchowski, M. V., Phys. Z. 17, 557(1916).Google Scholar
11. Freund, H. J. and Bauer, S. H., J. Phys. Chem. 81, 9941000(1977), D. J. Fruip and S. H. Bauer, J. Phys. Chem. 81, 1001-1006(1977), D. J. Fruip and S. H. Bauer, J. Phys. Chem. 81, 1007-1015(1977), D. J. Fruip and S. H. Bauer, J. Phys. Chem. 81, 1015-1024(1977).Google Scholar
12. Nowakowski, B., Ruckenstein, E., J. Chem. Phys. 94, 84878492(1991).Google Scholar
13. for Na see Knight, W. D., Clemenger, Keith, Heer, Walt A. de, Saunders, Winston, Chou, M. Y. and Cohen, Marvin L., Phys. Rev Lett. 52, 21412143(1984).Google Scholar
14. Brady, John W., Doll, Jimmie D., Thompson, Donald L., J. Chem. Phys. 71, 24672472(1979), John W. Brady, Jimmie D. Doll, Donald L. Thompson, J. Chem. Phys. 73, 2767-2772(1980), John W. Brady, Jimmie D. Doll, Donald L. Thompson, J. Chem. Phys. 74, 1026-1028(1981).Google Scholar
15. Chaiken, J. and Goodisman, Jerry, Photosci, J.. Photobio. A. in press.Google Scholar
16. Jullien, R., New J. Chem. 14, 239253(1990) and R. Botet and R. Jullien, J. Phys. A. 17, 2517-2530(1984).Google Scholar
17. Siano, D. B., J. Chem. Ed. 49, 755757(1972), J. Aitchison, J. A. C. Brown, The Lognormal Distribution (Cambridge Press, Cambridge, 1957).Google Scholar
18. see Allen, Terrance, Particle Size Measurement. 3rd ed. (Chapman and Hall, New York, 1981), p. 139.Google Scholar
19. Chang, C.Y. and Vook, R. W., J. Vac. Sci. Technol. A9, 559562(1991).Google Scholar
20. Aceto, S., Chang, C. Y., Vook, R. W., Thin Solid Films 219, 8086(1992).Google Scholar
21. Chang, C. Y. and Vook, R. W., Thin Solid Films 223, 2330(1993), C. Y. Chang and R. W. Vook, Materials Chemistry and Physics, 36, 199-216(1994).Google Scholar
22. Chaiken, J. and Goodisman, Jerry, manuscript in preparation.Google Scholar