Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-20T09:14:20.056Z Has data issue: false hasContentIssue false

Antiphase Defect Reduction Mechanism in Mbe Grown Gaas on Si

Published online by Cambridge University Press:  25 February 2011

Takashi Shiraishi
Affiliation:
Inst. Materials Science, University of Tsukuba, 1-1 Tennoudai, Tsukuba 305, Japan
Haruhiko Ajisawa
Affiliation:
Inst. Materials Science, University of Tsukuba, 1-1 Tennoudai, Tsukuba 305, Japan
Shin Yokoyama
Affiliation:
Inst. Materials Science, University of Tsukuba, 1-1 Tennoudai, Tsukuba 305, Japan
Mitsuo Kawabe
Affiliation:
Inst. Materials Science, University of Tsukuba, 1-1 Tennoudai, Tsukuba 305, Japan
Get access

Abstract

It is shown that antiphase boundary (APB) is annihilated during the growth, by monitoring the surface with reflection high energy electron diffraction (RHEED). The RHEED observation indicates that double domain GaAs changes to single domain within a thickness of 100 nm, while the transition region is estimated to exist within 200 nm from GaAs-Si interface by scanning electron microscope (SEM) observation of etch pits on vicinally polished surface. The self-annihilation mechanism of APB is discussed from these results.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ueda, T., Nishi, S., Kawarada, Y., Akiyama, M. and Kaminishi, K., Jpn. J. Appl. Phys. 25, L789 (1986).Google Scholar
2. Kawabe, M. and Ueda, T., Jpn. J. Appl. Phys. 26, L944 (1987).Google Scholar
3. Pukite, P.R. and Cohen, P.I., Appl. Phys. Lett. 50, 1739 (1987).Google Scholar
4. Pukite, P.R. and Cohen, P.I., J. Cryst. Growth 81, 214 (1987).Google Scholar
5. Sakai, S., Soga, T., Takeyasu, M. and Umeno, M., Mater. Res. Soc. Symp. Proc. Vol. 67, 15 (1986).Google Scholar
6. Holt, D.B., J. Phys. & Chem. Solids 30, 1297 (1969).Google Scholar
7. Akiyama, M., Ueda, T. and Onozawa, S., Mater. Res. Soc. Symp. Proc. Vol. 116, 79 (1988).Google Scholar
8. Horikoshi, Y., Kawashima, M. and Yamaguchi, H., Jpn. J. Appl. Phys. 25, L868 (1986).Google Scholar
9. Chang, L.L., Esaki, L., Howard, W.E., Ludeke, R. and Shul, G., J. Vac. Sci. Technol. 10, 655 (1973).Google Scholar
10. Kawabe, M., Ueda, T. and Takasugi, H., Jpn. J. Appl. Phys. 26, L114 (1987).Google Scholar
11. Bringans, R.D., Olmstead, M.A., Uhrberg, R.I.G. and Bachrach, R.Z., Appl. Phys. Lett. 51, 523 (1987).Google Scholar
12. Kawabe, M. and Shiraishi, T., J. Cryst. Growth 95, 103 (1989).Google Scholar
13. Okumura, H., private communication.Google Scholar
14. Harrison, W.A., Kraut, E.A., Waldrop, J.R. and Grant, R.W., Phys. Rev. B18, 4402 (1978).Google Scholar
15. Kroemer, H., J. Cryst. Growth 81, 193 (1987).Google Scholar
16. Cho, N.H., DeCooman, B.C., Carter, C.B., Fischer, R. and Wagner, D.K., Appl. Phys. Lett. 47, 879 (1985).Google Scholar
17. Petroff, P.M., J. Vac. Sci. Tecnol. B4, 874 (1986).Google Scholar
18. Ueda, O., Soga, T., Jimbo, T. and Umeno, M., 1989 Abstracts of 36th Conf. on Jpn. Appl. Phys. Soc. & Related Soc. 2p-ZM-9 (Chiba Japan, in Japanese)Google Scholar