Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:32:55.097Z Has data issue: false hasContentIssue false

Antimony Cluster Manipulation on the Si(001) Surface by Means of STM

Published online by Cambridge University Press:  03 September 2012

I.I. Kravchenko
Affiliation:
Materials Science Department, University of Wisconsin, Madison, WI 53706.
C.T. Salling
Affiliation:
Materials Science Department, University of Wisconsin, Madison, WI 53706.
M.G. Lagally
Affiliation:
Materials Science Department, University of Wisconsin, Madison, WI 53706.
Get access

Abstract

We present results of the manipulation of antimony clusters on Si(001) by means of a scanning tunneling microscope. By adjusting tip-sample separation and pulse voltage, an antimony cluster can be removed from the sample surface without damaging it. The success rate of the removed-cluster redeposition from the tip back onto the surface is 30%. In the remainder of the attempts a square shaped structure is created that had a hillock in the center. The hillock exhibits a metallic-like I-V curve. Such a structure cannot be created without an Sb cluster previously removed from the surface and located on the tip.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 McCord, M.A. and Pease, R.F.W., Appl.Phys.Lett. 50, 569 (1987).Google Scholar
2 van Loenen, E.J., Dijkkamp, D., Hoeven, A.J., Lenssinck, J.M., and Dieleman, J., Appl.Phys.Lett. 55, 1312 (1989).Google Scholar
3 Kim, Y., and Lieber, , Science. 257, 375 (1992).Google Scholar
4 McCord, M.A.,and Pease, J.Vac.Sci.Technol. B5, 430 (1987).Google Scholar
5 Dagata, J.A., Schneir, J., Harary, H.H., Evans, C.J., Postek, M.T., Bennet, J., Appl.Phys.Lett. 56, 2001 (1990).Google Scholar
6 For a recent survey of STM -based lithography see The Technology of Proximal Probe Lithography, ed. Marrion, C.R.K., (SPIE, Bellingham, WA, 1993).Google Scholar
7 Lyding, J.W., Shen, T.-C., Hubacek, J.S., Tucker, J.R., and Abeln, G.C., Appl.Phys.Lett. 64, 2010 (1994).Google Scholar
8 Snow, E.S., and Campbell, P.M., Appl.Phys.Lett. 64, 1932 (1994).Google Scholar
9 Silver, R.M., Ehrichs, E.E., de Lozanne, A.L., Appl.Phys.Lett. 51, 247 (1987).Google Scholar
10 Thibaudau, F., Roche, J.R., and Salvan, F., Appl.Phys.Lett. 64, 523 (1994).Google Scholar
11 Foster, J.S., Frommer, J.E., and Arnett, P.C., Nature. 331, 324 (1988).Google Scholar
12 Li, W., Virtanen, J.A., Penner, R.M., Appl.Phys.Lett. 60, 1181 (1992).Google Scholar
13 Dujardin, G., Walkup, R.E., and Avouris, Ph., Science. 255, 1232 (1992).Google Scholar
14 Becker, R.S., Golovchenko, J.A., Swartzentruber, B.S., Nature 325, 419 (1987).Google Scholar
15 Eigler, D.M., and Schweizer, E.K., Nature 344, 524 (1990).Google Scholar
16 Stroscio, J. A. and Eigler, D.M., Science 254, 1319 (1991).Google Scholar
17 Crommie, M.F., Lutz, C.P., and Eigler, D.M., Science 262, 218 (1993).Google Scholar
18 Uchida, H., Huang, D.H., Yoshinobu, J., and Aono, M., Surf.Sci. 287/288, 1056 (1993).Google Scholar
19 Boland, J.J., Science 262, 1703 (1993).Google Scholar
20 Mo, Y.W., Science 261, 886 (1993); J.Vac.Sci.Technol. B 12, 2231 (1994).Google Scholar
21 Ebert, Ph. and Urban, K., Ultramicroscopy 49, 344 (1993).Google Scholar
22 Ebert, Ph., Lagally, M.G., and Urban, K., Phys.Rev.Lett. 70, 1437 (1993).Google Scholar
23 Whitman, L.J., Stroscio, J.A., Dragoset, R.A., and Celotta, R.J., Science 251, 1206 (1991).Google Scholar
24 Ostrum, R.M., Tanenbaum, D.M., and Gallagher, A., Appl.Phys.Lett. 61, 925 (1992).Google Scholar
25 Iwatsuki, M., Kitamura, S., Sato, T., and Sueyoshi, T., Appl. Surf. Sci. 60/61, 580 (1992).Google Scholar
26 Heike, S., Hashizume, T., Wada, Y., Jpn.J.Appl.Phys 34, L10611063 (1995).Google Scholar
27 Mamin, H. J., Guethner, P. H. and Rugar, D., Phys. Rev. Lett. 65, 2418 (1990).Google Scholar
28 Mamin, H.J., Chiang, S., Birk, H., Guethner, P. H., Rugar, D., J.Vac.Sci.Technol. B9, 1398 (1991).Google Scholar
29 Kuramochi, H., Ushida, H., and Aono, M., Phys.Rev.Lett. 72, 932 (1994).Google Scholar
30 Huang, D., Uchida, H., and Aono, M., J. Vac. Sci. Technol. B12, 2429 (1994).Google Scholar
31 Lyo, W. and Avouris, Ph., Science 253, 173 (1991).Google Scholar
32 Kobayashi, A., Grey, F., Williams, R.S., Aono, M., Science 259, 1724 (1993).Google Scholar
33 Aono, M., Kobayashi, A., Grey, F., Uchida, H., Huang, D., Jpn. J. Appl. Phys. 32, 1470 (1993).Google Scholar
34 Salling, C.T., and Lagally, M. G., Science. 265, 502 (1994).Google Scholar
35 Hosoki, S., Hosaka, S., Hasegawa, T., Appl. Surf. Sci. 60/61, 643 (1992).Google Scholar
36 Huang, J.-L., Sung, Y.-E., and Lieber, C.M., Appl. Phys. Lett. 61, 1528 (1992).Google Scholar
37 McBride, S.E., and Wetsel, G.C., Jr., Appl. Phys. Lett. 57, 2782 (1990); 59, 3056 (1991).Google Scholar
38 Rabe, J.P., and Buchholz, S., Appl. Phys. Lett. 58, 702 (1991).Google Scholar
39 Swartzentruber, B.S., Mo, Y-W., Webb, M.B., Lagally, M.G., J.Vac.Sci.Technol. A7, 2901 (1989).Google Scholar
40 Mo, Y.W., Phys. Rev. Lett. 69, 3643 (1992); Phys. Rev. B 48, 17233 (1993).Google Scholar
41 Rich, D.H.,Franklin, G.E., Leibsle, F.M.,Miller, T., and Chiang, T.-C., Phys.Rev. B 40, 1804 (1989).Google Scholar