Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-06T09:18:11.487Z Has data issue: false hasContentIssue false

Antimicrobial Coatings Obtained in an Atmospheric Pressure Dielectric Barrier Glow Discharge

Published online by Cambridge University Press:  01 February 2011

Sabine Paulussen
Affiliation:
Materials Technology Division, VITO (Flemish Institute for Technological Research), Boeretang 200, B-2400 Mol, Belgium.
Dirk Vangeneugden
Affiliation:
Materials Technology Division, VITO (Flemish Institute for Technological Research), Boeretang 200, B-2400 Mol, Belgium.
Olivier Goossens
Affiliation:
Materials Technology Division, VITO (Flemish Institute for Technological Research), Boeretang 200, B-2400 Mol, Belgium.
Erik Dekempeneer
Affiliation:
Materials Technology Division, VITO (Flemish Institute for Technological Research), Boeretang 200, B-2400 Mol, Belgium.
Get access

Abstract

This paper addresses the development of plasma polymer coatings that should prevent bacteria from adhering to medical devices, implants, textile fibers, packaging materials, etc. The two main parameters affecting bacterial colonization onto surfaces are the surface energy and the surface roughness. Both parameters can be adjusted by the deposition of a thin plasma polymer coating in an atmospheric pressure dielectric barrier glow discharge. According to SEM, FTIR, SPM, XPS and contact angle measurements, smooth, hydrophilic plasma polymer coatings were obtained under specific plasma conditions starting from 2-hydroxyethyl methacrylate (HEMA) and ethyl diazoacetate (EDA).

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Dufrêne, Y. F., Boonaert, C. J. P., and Rouxhet, P. G., Colloids and Surfaces B 7, 113128 (1996).Google Scholar
[2] Arciola, C. R., Campoccia, D., and Montanaro, L., Biomaterials 23, 14951502 (2002).Google Scholar
[3] Janocha, B., Hegemann, D., Oehr, C., Brunner, H., Rupp, F., and Geis-Gerstorfer, J., Surface and Coatings Technology 142-144, 10511055 (2001).Google Scholar
[4] Rosenberg, M. and Kjelleberg, S., Microbial Ecology 9, 353393 (1986).Google Scholar
[5] Quirynen, M., Marechal, M., Busscher, H. J., Weerkamp, A. H., Arends, J., Darius, P. L., and Steenberghe, D. Van, Journal of Dental Research 68, 796799 (1989).Google Scholar
[6] Miqin, Z., Desai, T., and Ferrari, M., Biomaterials 19, 953960 (1998).Google Scholar
[7] Coussotrico, P., Clarotti, G., Benaoumar, A. A., Najimi, A., Sledz, J., Schue, F., and Quatrefages, R., European Polymer Journal 30, 13271333 (1994).Google Scholar
[8] Clarotti, G., Schue, F., Sledz, J., Geckeler, K. E., Gopel, W., and Orsetti, A., Journal of Membrane Science 61, 289301 (1991).Google Scholar
[9] Ratner, B. D., Journal of Biomaterials Science-Polymer Edition 4, 311 (1992).Google Scholar
[10] Favia, P. and d'Agostino, R., Surface & Coatings Technology 98, 11021106 (1998).Google Scholar
[11] Goossens, O., Dekempeneer, E., Vangeneugden, D., Leest, R. Van de, and Leys, C., Surface and Coatings Technology 142-144, 474481 (2001).Google Scholar
[12] Massines, F., Rabehi, A., Decomps, P., Gadri, R. B., Segur, P., and Mayoux, C., Journal of Applied Physics 83, 29502957 (1998).Google Scholar
[13] Massines, F., Gadri, R. B., Decomps, P., Rabehi, A., Segur, P., and Mayoux, C., AIP Conference Proceedings. no. 363, 306–15 (1996).Google Scholar
[14] Salge, J., Surface & Coatings Technology 80, 17 (1996).Google Scholar