Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T02:14:26.459Z Has data issue: false hasContentIssue false

Antibacterial Effect of Biodegradable Magnesium Alloys Modified By Biocompatible Transitions Metals

Published online by Cambridge University Press:  01 February 2011

V.I. García-Pérez
Affiliation:
Laboratorio de Genética Molecular, Facultad de Odontología, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, 04510 México D. F. México
A. Almaguer-Flores
Affiliation:
Laboratorio de Genética Molecular, Facultad de Odontología, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, 04510 México D. F. México
C. Ramírez-Brizuela
Affiliation:
Metals Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, 04510 México D. F. México
S.E. Rodil
Affiliation:
Metals Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, 04510 México D. F. México
Get access

Abstract

Magnesium (Mg) alloys can be use as biodegradable medical devices, eliminating the need for a second operation for implant removal. An important feature on biomedical devices is to avoid the bacterial adhesion and subsequent biofilm formation that cause most of the implant-failures. The aim of this study was to analyze the differences on bacterial adhesion and biofilm development on Magnesium alloys (Mg-Al-Zn) modified by different transition metals; Tantalum, Niobium and Titanium. Nine oral bacterial strains (Aggregatibacter actinomycetemcomitans serotipe b, Actinomyces israelii, Campylobacter rectus, Eikenella corrodens, Fusobacterium nucleatum, Parvimonas micra, Porphyromonas gingivalis, Prevotella intermedia and Streptococcus sanguinis) were incubated on the different alloys and commercial medical grade stainless steel (AISI 316L) was used as a control. The initial bacterial adhesion was determined after 24 hours using a counting plate technique and the subsequent biofilm development at 1, 3, 7 days was studied using the Scanning Electron Microscopy. Significant differences were determined using t-test. The results showed that on the magnesium-alloys, the number of bacteria attached after 24 hours was two orders of magnitude lower than the stainless steel. On the other hand, bacterial colonies were not observed by electron microscopy in any of the days of incubation, even though in the control surface clear colonies and biofilm development were observed. This study showed that magnesium alloys inhibits the bacterial adhesion and the subsequent biofilm development.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ryan, T. J., Curr Opin Infect Dis 20 (2), 124 (2007).Google Scholar
2 Costerton, J. W., Stewart, P. S., and Greenberg, E. P., Science 284 (5418), 1318 (1999).Google Scholar
3 Costerton, J. W., Int J Antimicrob Agents 11 (3–4), 217 (1999).Google Scholar
4 Patel, R., Clin Orthop Relat Res (437), 41 (2005).Google Scholar
5 Costerton, J. W., Clin Orthop Relat Res (437), 7 (2005).Google Scholar
6 Vincent, J. L., Lancet 361 (9374), 2068 (2003).Google Scholar
7 Amoroso, P. F., Adams, R. J., Waters, M. G. et al. , Clin Oral Implants Res 17 (6), 633 (2006).Google Scholar
8 Teughels, W., Van Assche, N., Sliepen, I.et al., Clin Oral Implants Res 17 Suppl 2, 68 (2006).Google Scholar
9 Smith, A. W., Adv Drug Deliv Rev 57 (10), 1539 (2005).Google Scholar
10 Chopra, I., J Antimicrob Chemother 59 (4), 587 (2007).Google Scholar
11 Choi, J. W., Kong, Y. M., Kim, H. E. et al. , Journal of the American Ceramic Society 81 (7), 1743 (1998).Google Scholar
12 Zreiqat, H., Howlett, C. R., Zannettino, A. et al. , J Biomed Mater Res 62 (2), 175 (2002).Google Scholar
13 Witte, F., Kaese, V., Haferkamp, H. et al. , Biomaterials 26 (17), 3557 (2005).Google Scholar
14 Staiger, M. P., Pietak, A. M., Huadmai, J. et al. , Biomaterials 27 (9), 1728 (2006).Google Scholar
15 Matsuno, H., Yokoyama, A., Watari, F. et al. , Biomaterials 22 (11), 1253 (2001); J. Breme and V. Wadewitz, Int J Oral Maxillofac Implants 4 (2), 113 (1989).Google Scholar
16 Zhang, S., Zhang, X., Zhao, C. et al. , Acta Biomater 6 (2), 626.Google Scholar
17 Nandakumar, K., Sreekumari, K. R., and Kikuchi, Y., Biofouling 18 (2), 129 (2002).Google Scholar
18 Robinson, D. A., Griffith, R. W., Shechtman, D. et al. , Acta Biomater 6 (5), 1869.Google Scholar
19 Almaguer-Flores, A., Olivares-Navarrete, R., Ximenez-Fyvie, L. A. et al. , Mater. Res. Soc. Symp. Proc 1244 (2009).Google Scholar
20 Pietak, A., Mahoney, P., Dias, G. J. et al. , J Mater Sci Mater Med 19 (1), 407 (2008);Google Scholar
Kuwahara, H, Al-Abdullat, Y, Mazaki, N. et al. , Mater Trans 42 (7), 1317–21 (2001).Google Scholar