Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-20T07:14:19.187Z Has data issue: false hasContentIssue false

Anomalous Temperature Dependence of Yield Stress and Work Hardening Coefficient of B2-Stabilized NiTi Alloys

Published online by Cambridge University Press:  15 February 2011

Hideki Hosoda
Affiliation:
Now with Institute for Materials Research, Tohoku University, Katahira, Aoba-ku, Sendai 980, Japan.
Yoshinao Mishima
Affiliation:
Precision and Intelligence Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226, Japan.
Tomoo Suzuki
Affiliation:
Prof. Emeritus, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152, Japan.
Get access

Abstract

Yield stress and work hardening coefficient of B2-stabilized NiTi alloys are investigated using compression tests. Compositions of NiTi alloys are based on Ni-49moJ.%Ti, to which Cr, Co and Al are chosen as ternary elements which reduce martensitic transformation temperatures of the B2 phase. Mechanical tests are carried out in liquid nitrogen at 77K, air at room temperature (R.T.) and in an argon atmosphere between 473K and 873K. Only at 77K, some alloys show characteristic stress-strain curves which indicate stress induced martensitic transformation (SIMT), but the others do not. Work hardening coefficient is found to be between 2 and 1 lGPa in all the test temperature range. The values are extremely high compared with Young's modulus of B2 NiTi. Yield stress and work hardening coefficient increase with test temperature between R.T. and about 650K in most alloys. The anomalous temperature dependence of mechanical properties is not related to SIMT but to precipitation hardening and/or anomalous dislocation motion similar to B2-type CoTi. Solution hardening by adding ternary elements is evaluated to be small for Cr and Co additions, and large for Al addition, depending on difference in atomic size of the ternary element with respect to Ni or Ti.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Suzuki, Y., Takagi, K. and Fuji, Y., in TITANIUM'80 Science and Technology, ed. by Kimura, T. and Izumi, O., (Proc. 4th Inti. Conf. Ti, 2, TMS-ASM, Warrendale, PA, 1980) p. 497.Google Scholar
2. Kornilov, I.I., Kachur, Ye V. and Belousov, O. K., Fiz. Met. Metalloved, 32, 420 (1971).Google Scholar
3. Wang, F. E., DeSavage, B. F., Buehler, W. J. and Hosier, W. R., J. Appl. Phys., 39, 2166 (1968).Google Scholar
4. Honma, T., Matsumoto, M., Shugo, Y., Nishida, M. and Yamazaki, I., in TITANIUM'80 Science and Technology. ed. by Kimura, T. and Izumi, O., (Proc. 4th Intl. Conf. Ti, 2, TMS-ASM, Warrendale, PA, 1980) p. 1455.Google Scholar
5. Eckelmeyer, K. H., Scripta Metall., 10, 667 (1976).Google Scholar
6. Hosoda, H., Fukui, T., Inoue, K., Mishima, Y. and Suzuki, T., in Advanced in Materials for Smart Systems. (Mater. Res. Soc. Proc. Pittsburgh, PA), in press.Google Scholar
7. Hosoda, H., Mizuuchi, K. and Inoue, K., in Proc. Intl. Svmp. Microsystems. Intelligent Materials and Robots, ed. by Tani, J. and Sashi, M., (7th Sendai Intl. Symp., Sendai, Japan, 1995) p. 231.Google Scholar
8. Hwang, C. M. and Wayman, C. M., Scripta Metall., 17, 381 (1983).Google Scholar
9. Hosoda, H., Kamio, A., Suzuki, T. and Mishima, Y., J. Japan Inst. Met. 60, 1197 (1996).Google Scholar
10. Melton, K. N. and Mercier, O., Acta Metall., 29, 393 (1981).Google Scholar
11. Wayman, C.M. and Inoue, H. R. P., in Intermetallic Compounds, ed. by Westbrook, J. H. and Fleischer, R. L., (1, John Wiley and Sons, New York, NY, 1995) p. 827.Google Scholar
12. Miyazaki, S., Matsumoto, O. and Otsuka, K., in Intermetallic Compounds, ed. by Izumi, O., (Proc. Sixth JIM Intl. Symp. (JIMIS-6), Japan Institute of Metals, Sendai, Japan, 1991) p. 269.Google Scholar
13. Perkins, J., Metals Forum, 4, 153 (1981).Google Scholar
14. Hosoda, H., Miura, S.. Mishima, Y. and Suzuki, T., submitted in J. Japan. Inst. Met.Google Scholar
15. Buehler, W. J. and Wiley, R. C, Trans. ASM, 55, 269 (1962).Google Scholar
16. Suzuki, T., J. Japan Inst. Met., 34, 337 (1970).Google Scholar
17. Kear, B. H. and Wilsdorf, H. G. F, Trans. Met. Soc. AIME, 224, 382 (1962).Google Scholar
18. Takasugi, T. and Izumi, O., J. Mater. Sci., 23, 1265 (1988).Google Scholar
19. Takasugi, T., Yoshida, M. and Hanada, S., in Intermetallic Compounds, ed. by Izumi, O., (Proc. Sixth JLM Intl. Symp. (JIMIS-6), Japan Institute of Metals, Sendai, Japan, 1991) p. 615.Google Scholar
20. Vanloo, F. J. J. and Bastin, G. F., J. Less-Common Met., 81, 61 (1981).Google Scholar
21. Murray, J. L., in Binary Alloy Phase Diagram, ed. by Massalski, T. B., Murray, J. L., Benett, L. H. and Baker, H., (2, ASM, Metals Park, OH, 1986) p. 1763.Google Scholar
22. Budberg, P. B., in Ternary Alloys, ed. by Petzow, G. and Effenberg, G., (3, ASM Intl., Materials Park, OH, 1990) p. 7.Google Scholar