Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-05T13:03:00.761Z Has data issue: false hasContentIssue false

Anomalous Behavior of Heterogeneous Materials at Microwaves Frequencies: Introduction to Fractional Derivatives in Electromagnetism

Published online by Cambridge University Press:  28 February 2011

F. Heliodore
Affiliation:
Laboratoires de Marcoussis, Centre de Recherches de la CGE, Route de Nozay, F 91 460 Marcoussis, FRANCE
D. Cottevieille
Affiliation:
Laboratoires de Marcoussis, Centre de Recherches de la CGE, Route de Nozay, F 91 460 Marcoussis, FRANCE
A. Le Mehaute
Affiliation:
Laboratoires de Marcoussis, Centre de Recherches de la CGE, Route de Nozay, F 91 460 Marcoussis, FRANCE
Get access

Abstract

The present note introduces new trends in electromagnetic spectroscopy in complex media.When an electromagnetic wave propagates in heterogeneous media, some questions arise about both physical meaning and validity range of the traditional analysis. The aim of our advanced research is related to the generalisation of Maxwell's equations able todescribe both homogeneous and heterogeneous media from an unique point of view.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Méhauté, A. Le, “Les Géométries Fractales”, Hermes, 1990.Google Scholar
[2] Procedings of the Royal Society of London, “Fractal in the Natural Sciences”, 423, Edited by Fleischmann, M., Tildesley, D.D., Ball, R.C., 1989.Google Scholar
[3] Schaeffer, D.W., Martin, J.E., Hurd, A.J., Keefer, K.D., Physics of Finely Divided Matter, Springer Verlag, N.Y., 31, 1985.Google Scholar
[4] Chabassier, G., Héliodore, F., Méhauté, A. Le, to be published in J. Optics Am. Soc., 1990.Google Scholar
[5] Chylek, P., Srivastava, V., Physical Review B, Vol 30, N°2, 1984.Google Scholar
[6] Sihvola, A.H., Lindell, I.V., Helsinki University of Technology, Electromagnetics Lab. Report Series, 37,40,43, 1988-1989.Google Scholar
[7] Niklasson, G.A., “Effective medium theories with pair and threepoint correlation effects”, Etopim2, 364, 1988.Google Scholar
[8] Ellison, W.J., Parneix, J.P., Bottreau, A.M., “Progress in Electromagnetic Research Symposium”, Boston, 1989.Google Scholar
[9] Schwartz, L., Théorie des distributions, Hermann, Paris, 1966.Google Scholar
[10] Tsallis, C., in “Fractal in Physics” Ed. Pietronero, L. and Tossati, E., Elsevier Sci. Publ. 1986.Google Scholar
[11] AGARD Conference Proceedings, “Scattering and Propagation in Random Media”, N°419, 1988.Google Scholar
[12] Clerc, J.P., Giraud, G., Laugier, J.M., Luck, J.M., “The AC electrical conductivity of binary disordered systems, percolation clusters, fractals and related models”, to be published in Advances in Physics.Google Scholar
[13] Méhauté, A. Le, Héliodore, F., “Progress in Electromagnetic Research Symposium”, Boston, 1989.Google Scholar
[14] Private Communication, CGE, 1984.Google Scholar
[15] Méhauté, A. Le, Guibert, A. De, Delaye, M., Filippi, C., C. R. Acad. Sci., Paris, T. 294(11) 865,1982.Google Scholar
[16] Méhauté, A. Le, “The fractal approach to heterogeneous chemistry”, Chapter 4, 14, edited by Avnir, D., Wiley & Sons, N.Y., 1989.Google Scholar
[17] Méhauté, A. Le, Crépy, G., Solid State Ionics, 9 & 10, 17, 1983.Google Scholar
[18] Heliodore, F. and al, to be publishedGoogle Scholar