Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T08:56:53.473Z Has data issue: false hasContentIssue false

Analytical Electron Microscopy Study of Electron Radiation Damage in Iron Phosphate Glass Waste Forms

Published online by Cambridge University Press:  11 February 2011

K. Sun
Affiliation:
Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109
L. M. Wang
Affiliation:
Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109
R. C. Ewing
Affiliation:
Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109
Get access

Abstract

A series of iron phosphate glass waste forms with compositions of 45Fe2O3-55P2O5, 20Fe2O3-80P2O5, and 20Fe2O3-20Na2O-60P2O5, namely FeP-1, FeP-2 and FeP-3, was studied by analytical electron microscopy (AEM). Transmission electron microscopy (TEM) bright-field (BF) imaging showed that under the electron irradiation, phase segregation occurred in both the FeP-1 and FeP-2 samples at high electron doses (3.84×1026 e/m2). In contrast, bubbles formed in the FeP-3 sample, even at a relatively low dose (2.88×1025 e/m2), which may be attributed to the migration of Na under irradiation as in the case in sodium borosilicate glass. Series electron energy-loss spectroscopy (EELS) analysis showed that the glass materials experienced mass-loss and composition variation. No obvious Fe valence state changes under irradiation were observed within the irradiation period.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Marasinghe, G. K., Karabulut, M., Ray, C. S., Day, D. E., Shumsky, M. G., Yelon, W. B., Booth, C. H., Allen, P. G., and Shuh, D. K., J. Non-Cryst. Solids 222, 144 (1997).Google Scholar
2. Marasinghe, G. K., Karabulut, M., Ray, C. S., Day, D. E., Shuh, D. K., Allen, P. G., Saboungi, M. L., Grimsditch, M., and Haeffner, D., J. Non-Crystal. Solids 263, 146 (2000).Google Scholar
3. Yu, X. Y., Day, D. E., Long, G. J., Brow, R. K., J. Non-Cryst. Solids 215, 21 (1997).Google Scholar
4. Pivac, B., Mogus-Milankovic, A., and Day, D. E., J. Non-Crystal. Solids 226, 41 (1998).Google Scholar
5. Weber, W. J., and Roberts, F. P., Nucl. Tech., 60, 178 (1983).Google Scholar
6. Wang, L. M., Nucl. Instr. & Meth. B141, 312 (1998).Google Scholar
7. Wang, S. X., Wang, L. M., and Ewing, R. C., J. Nucl. Mater. 278, 233 (2000).Google Scholar
8. Kenik, E. A., J. Nucl. Mater. 216, 157 (1994).Google Scholar
9. Tabira, Y., Mater. Sci. Eng. B41, 63 (1996).Google Scholar
10. Qian, M. X., Sarikaya, M., and Stern, E. A., Ultramicroscopy 59, 137 (1995).Google Scholar
11. Yuan, Z. W., Csillags, S., Tafreshi, M. A., Colliex, C., Ultramicroscopy 59, 149 (1995).Google Scholar
12. Egerton, R. F., and Rauf, I., Ultramicroscopy 80, 247 (1999).Google Scholar
13. Saifullah, M. S. M., Boton, G. A., Boothroyd, C. B., and Humphreys, C. J., J. Appl. Phys. 86, 2499 (1999).Google Scholar
14. Jiang, N., Qiu, J., and Silcox, J., Appl. Phys. Lett. 77, 3956 (2000).Google Scholar
15. Egerton, R. F., Electron Energy Loss Spectroscopy in the Electron Microscope, 2nd, (Plenum: New York, 1996.).Google Scholar
16. Weber, W. J., Ewing, R. C., Austen Angell, C., Arnold, G. W., Cormack, A. N., Delaye, J. M., Griscom, D. L., Hobbs, L. W., Navrotsky, A., Price, D. L., Marshall Stoneham, A., Weinberg, M. C., J. Mater. Res. 12, 1946 (1997).Google Scholar
17. Leapman, R. D., and Grunes, L. A., Phys. Rev. Lett. 45, 397 (1982).Google Scholar
18. Taftø, J., and Krivanek, O. L., Phys. Rev. Lett. 48, 560 (1982).Google Scholar
19. van Aken, P. A., Liebscher, B., and Styrsa, V. J., Phys. Chem. Minerals 25, 323 (1998).Google Scholar