Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-06T05:18:51.130Z Has data issue: false hasContentIssue false

Analyses of Compensation Related Defects in II-VI Compounds

Published online by Cambridge University Press:  10 February 2011

A. Castaldini
Affiliation:
INFM and Department of Physics, University of Bologna, Bologna, Italy
A. Cavallini
Affiliation:
INFM and Department of Physics, University of Bologna, Bologna, Italy
P. Fernandez
Affiliation:
Departamento de Fisica de Materiales, Facultad de Ciencias Fisicas, Universidad Complutense, 28040 Madrid, Spain
B. Fraboni
Affiliation:
INFM and Department of Physics, University of Bologna, Bologna, Italy
J. Piqueras
Affiliation:
Departamento de Fisica de Materiales, Facultad de Ciencias Fisicas, Universidad Complutense, 28040 Madrid, Spain
Get access

Abstract

The deep levels present in semiconducting CdTe and semi-insulating (SI) CdTe:Cl and Cd0.8Zn0.2 Te have been investigated by means of cathodoluminescence (CL), deep level transient spectroscopy (DLTS), photo-DLTS (PDLTS) and photo induced current transient spectroscopy (PICTS). PICTS and PDLTS can be applied to SI materials and allow to determine whether the observed deep levels are hole or electron traps.Among the observed deep centers, we have focused our attention on those involved in the compensation process such as the so called center A and the deep traps located near midgap. We have identified a deep acceptor, labelled H, and a deep donor, labelled E, the latter is peculiar to CdTe:Cl and can be a good candidate for the deep donor level needed to explain the compensation process in SI CdTe:Cl.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fiederle, M., Ebling, D., Eiche, C., Hofinann, D.M., Salk, M., Stadler, W., Benz, K.W. and Meyer, B.K., J.Crystal Growth 138, 529 (1994)Google Scholar
2. Hofmann, D.M., Omling, D., Grimmeiss, H.G., Meyer, B.K., Benz, K.W. and Sinerius, D., Phys.Rev.B 45, 6247 (1992)Google Scholar
3. Stadler, W., Hoffmnan, D.M., Alt, H.C., Muschik, T., Meyer, B.K., Weigel, E., Müller-Vogt, G., Salk, M., Rupp, E. and Benz, K.W., Phys.Rev.B 51, 10619 (1995)Google Scholar
4. Castaldini, A., Cavallini, A., Fraboni, B., Fernandez, P. and Piqueras, J., Appl.Phys.Lett 69 3507 (1996)Google Scholar
5. Agrinskaya, N.V. and Arkadeva, E.N., Nucl.Instr. and Meth. A283, 260 (1989)Google Scholar
6. Moravec, P., Hage-Ali, M., Chibani, L. and Siffert, P. Mat Sci.Eng. B16, 223 (1993).Google Scholar
7. Blood, P. and Orton, J.W., The Electrical Characterization of Semiconductors: Majority Carriers and Electron States, (Academic Press, U.K., 1992).Google Scholar
8. Mooney, P.M. J.Appl.Phys. 54, 208 (1983).Google Scholar
9. Lopez-Cruz, E., Gonzalez-Hemandez, J., Allred, D.D. and Allred, W.P. J.Vac.Sci.Technol. A8, 1934 (1990)Google Scholar
10. Davis, C. Barnett, Allred, D.D., Reyes-Mena, A., Gonzalez-Hemandez, J., Gonzales, O., Hess, B.C. and Allred, W.P., Phys.Rev. B 47, 13363 (1993)Google Scholar
11. Pal, U., Femandez, P., Piqueras, J., Sochinskii, N.V. and Dieguez, E., J.Appl.Phys. 78, 1992 (1995)Google Scholar
12. Takebe, T., Saraie, J. and Matsunami, H. J.Appl.Phys. 53, 457 (1982)Google Scholar
13. Castaldini, A., Cavallini, A., Fraboni, B., Fernandez, P. and Piqueras, J. Phys.Rev. B 56 in pressGoogle Scholar