Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-06T12:48:45.975Z Has data issue: false hasContentIssue false

An Overview of the Temperature Dependence of the Strength of the Ni3Al System

Published online by Cambridge University Press:  28 February 2011

John K. Tien
Affiliation:
Center for Strategic Materials, Henry Krumb School of Mines Columbia University, New York, NY 10027
Sandra Eng
Affiliation:
Center for Strategic Materials, Henry Krumb School of Mines Columbia University, New York, NY 10027
Juan M. Sanchez
Affiliation:
Center for Strategic Materials, Henry Krumb School of Mines Columbia University, New York, NY 10027
Get access

Abstract

Many L12 ordered alloys including the Ni3Al intermetallic system are noted for their anomalous temperature dependence of strength. It is also generally accepted that this dependence is due to a thermally assisted cross-slip, work hardening based model [1,2]. An alternative antiphase boundary (APB) based model has long been dismissed by the research community because prior calculations of APB energy, and some measurements, have shown that the appropriate APB energy of Ni3Al should remain constant with temperature [3]. These aspects will be reviewed briefly and will serve as a basis for a presentation of some more recent results. These will include the strain rate insensitivity of strength versus temperature in the increasing strength temperature region, a result that is, in our view, rather contradictory to the thermally assisted cross-slip model. Some very recent calculations of equilibrium APB energies will also be reviewed in the context of the strength dependence issue. These results show that the equilibrium APB energy increases with temperature. The question of what role, if any, equilibrium APB plays in the deformation and strengthening process will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Takeuchi, S., Kuramoto, E., Acta. Met. 21, 415 (1973).Google Scholar
2. Paidar, V., Pope, D.P., Vitek, V., Acta. Met. 32, 435 (1984).Google Scholar
3. Flinn, P.A., Trans. AIME 218, 145 (1960).Google Scholar
4. Tien, John K., “On The Celestial Limits Of Nickel-Base Superalloys” in Superalloys Processing, Metals and Ceramics Information Center, September 1972,W1.Google Scholar
5. Westbrook, J.H., Trans. AIME 209, 898, (1957).Google Scholar
6. Pope, D.P., Ezz, S.S., Int. Metals Rev., 29, 136, (1984).Google Scholar
7. Stoloff, N.S.. “Ordered Alloys for High Temperature Applica-tions”,in High-Temperature Ordered Intermetallic Alloys, Materials Research Society, Boston, 19814, pp. 327.Google Scholar
8. Thornton, P.H., Davies, R.G., Johnston, T.L., Met. Trans. 1, 207 (1970).Google Scholar
9. Kear, B.H., Wilsdorf, H.G.F., Trans. AIME 224, 382 (1962).Google Scholar
10. Copley, S.M., Kear, B.H., Trans AIME 239, 984 (1967).Google Scholar
11. Kear, B.H., Pope, D.P., “Role Of Refractory Elements In Strengthening Of Y' And Y' Precipitation Hardened Nickel-Based Superalloys”, in Refractory Alloying Elements in Superalloys, ASM Press, Metals Park, OH, 1984, pp. 135152.Google Scholar
12. Jensen, R.R., Tien, J.K., Met. Trans. A, 16A, 1049 (1985).Google Scholar
13. Mulford, R.A., Pope, D.P., Acta. Met., 21, 1375 (1973).CrossRefGoogle Scholar
14. Willertz, L.E., JTEVA, 2, 478 (19714).Google Scholar
15. Carnahn, R.D., J. Of Metals, Dec. 1964, 990.Google Scholar
16. Koehler, J.S., Seitz, F., J. App. Mech. 14, A217 (1947).CrossRefGoogle Scholar
17. Marcinkowski, M.J., Brown, N., Fisher, R.M., Acta. Met. 9, 129 (1961).Google Scholar
18. Kear, B.H., Giamei, A.F., Silcock, J.M., Ham, R.K., Scripta. Met. 2, 287 (1968).CrossRefGoogle Scholar
19. Brown, N., Phil. Mag. 4, 693 (1959).Google Scholar
20. Popov, L.E., Kozlov, E.V., Gosolov, N.S., Phys. Stat. Sol. 13, 569 (1966).Google Scholar
21. Sanchez, J.M., Eng, S., Wu, Y.P.. Tien, J.K., “Modeling of Antiphase Boundaries in Structures,” same symposium. LI2Google Scholar
22. Lall, C., Chin, S., Pope, D.P., Met. Trans. A 10A, 1323 (1979).Google Scholar
23. Leverant, G.R., Gell, M., Hopkins, S.W., Mater. Sci. Engn., 125 (1971).Google Scholar
24. Veyssiere, P., Douin, J., Beauchamp, P., Phil. Mag. 51, 469 (1985).Google Scholar
25. Yoo, M.H., Scripta Met. 20, 915 (1986).CrossRefGoogle Scholar
26. Gleiter, H., Hornbogen, E., Phys. Stat. Sol. 12, 235 (1965).Google Scholar
27. Jensen, R.R., Ph.D. Thesis, Columbia University, New York, NY, 1984.Google Scholar
28. Shah, D.M., Duhl, D.N., in Superalloys 1984, edited by Gell, M., et al. (The Metallurgical Society of AIME, Warrendale, PA, 1984), p. 105.Google Scholar
29. Wu, Y.P., Tien, J.K., Sanchez, J.M., Columbia University, unpublished research.Google Scholar
30. Veyssiere, P., Phil. Mag. A 50, 189 (1984).Google Scholar
31. Horton, J.A., Liu, C.T., Acta Met. 12, 2191 (1985).CrossRefGoogle Scholar
32. Vignoul, G.E., Eng, S., Sanchez, J.M., Tien, J.K., presented at the 1986 Annual AIME Meeting, New Orleans, LA.Google Scholar
33. Langiulli, D.F., Tien, J.K., Columbia University unpublished research.Google Scholar
34. Bellows, R.S., Schwarzkopf, E.A., Tien, J.K. submitted for publication in Met. Trans. A.Google Scholar
35. Bellows, R.S., Tien, J.K., in press, Scripta Met.Google Scholar