Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T07:51:28.140Z Has data issue: false hasContentIssue false

An In-Situ Oblique-Incidence Optical Reflectance Difference Study of Co Electrodeposition on a Polycrystalline Au(111) Surface

Published online by Cambridge University Press:  01 February 2011

J. Gray
Affiliation:
University of California, Davis Davis, CA 95616, U.S.A.
W. Schwarzacher
Affiliation:
H.H. Wills Physics Laboratory, Tyndall Avenue Bristol BS8 1TL, U.K.
X.D. Zhu
Affiliation:
University of California, Davis Davis, CA 95616, U.S.A.
Get access

Abstract

We studied submonolayer and multilayer deposition of Co on Au(111) using in-situ oblique-incidence optical reflectance difference (OI-RD). We show that the optical technique is highly sensitive and accurate in determining the electrodeposited film thickness and growth mode. We found that the optically determined thickness of the ultrathin Co film is in very good agreement with that deduced from the integration of the anodic current during cyclic voltammetry (CV). From a weak oscillatory behavior of the optical reflectance difference signal, it seems that the growth of electrodeposited Co on Au(111) under pulsed deposition condition proceeds by a combination of three dimensional island and quasi layer-by-layer growth modes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chappert, C., Dang, K. Le, Beauvillian, P., Hardequint, H. and Renard, R., Phys. Rev. B 34, 3192 (1986).Google Scholar
2. Voigtlander, B., Meyer, G. and Amer, N.M., Phys. Rev. B 44, 354 (1991).Google Scholar
3. Cagnon, L., Devolder, T., Cortes, R., Morrone, A., Schmidt, J.E., Chappert, C. and Allongue, P., Phys. Rev. B 63, 104419 (2001).Google Scholar
4. Cagnon, L., Gundel, A., Devolder, T., Morrone, A., Chappert, C., Schmidt, J.E. and Allongue, P., Appl. Surf. Sci. 164, 22 (2000).Google Scholar
5. Kleinert, M., Waibel, H.F., Engelmann, G.E., Martin, H. and Kolb, D.M., Electrochimica Acta 46, 3129 (2001).Google Scholar
6. Bubendorff, J.L., Beaurepaire, E., Meny, C., Pannisod, P. and Bucher, J.P., Phys. Rev. B 56, n. 12 R7120 (1997).Google Scholar
7. Bubendorff, J.L., Beaurepaire, E., Meny, C., Pannisod, P. and Bucher, J.P., J. Appl. Phys. 83, n. 11 7043 (1998).Google Scholar
8. Hoffman, D., Schindler, W. and Kirschner, J., Appl. Phys. Lett. 73, n. 22 3279 (1998).Google Scholar
9. Schindler, W., Koop, Th., Kazimirov, A., Scherb, G., Zegenhagen, J., Schultz, Th., Feidenhans'l, R. and Kirschner, J., Surf. Sci. 465, L783 (2000).Google Scholar
10. Pasa, A.A., and Schwarzacher, W., Phys. Stat. Sol. 173, 73 (1999).Google Scholar
11. Nabighian, E., Bartelt, M.C. and Zhu, X.D., Phys. Rev. B 62, no. 3, 1619, (2000).Google Scholar
12. Zettler, J.-T., Wethkamp, T., Zorn, M., Pristovsek, M., Meyne, C., Ploska, K. and Richter, W., Appl. Phys. Lett. 67, no. 25, (1995).Google Scholar
13. Harbison, J.P., Aspnes, D.E., Studna, A.A., Florez, L.T. and Kelly, M.K., Appl. Phys. Lett. 52, no. 24, (1988).Google Scholar
14. Thomas, P. and Zhu, X.D, to be published. Google Scholar
15. Wong, A. and Zhu, X.D., Appl. Phys. A: Mater. Sci. Process. 63, 1 (1996).Google Scholar
16. Scherb, G. and Kolb, D.M., J. Electroanal. Chem. 396, 151 (1995).Google Scholar
17. Weaver, J.H. and Lynch, D.W. Optical Properties of Metals 18, no. 2, p.60 (1981).Google Scholar