Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T07:46:00.207Z Has data issue: false hasContentIssue false

An in Situ Stm Study of Cu and Ni Electrodeposition

Published online by Cambridge University Press:  15 February 2011

T. P. Moffat*
Affiliation:
Materials Science and Engineering Laboratory National Institute of Standards and Technology Gaithersburg, Md 20899
Get access

Abstract

An STM study has been initiated to investigate the various processes associated with electrodeposition of Cu-Ni multilayers on Cu (100). The substrates were prepared by electropolishing in phosphoric acid followed by immersion in 10 mmol/l HCl. A (√2×√) R°45 adlattice of oxidatively adsorbed chlorine is formed under these conditions. The adlayer stabilizes the surface steps in the 〈100〉 direction which corresponds to the close packed direction of the chloride adlattice. In dilute mmo1/1 solutions of cuprous ion, reduction occurs under mass transport control with the electrocrystallization reaction proceeding by step flow in the 〈100〉 direction. At more negative potentials chloride is reductively desorbed. Coincident with desorption the highly kinked metal steps become frizzy and move towards adopting the close packed 〈110〉 orientation of the metal lattice. Preliminary experiments on heteroepitaxial nickel deposition reveal regions where electrocrystallization on Cu(100) occurs via step flow in the 〈110〉 direction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ross, C. A., Annu. Rev. Mater. Sci., 24, 159 (1994).Google Scholar
2. Moffat, T. P., J. Electrochem. Soc., 142, 3767 (1995).Google Scholar
3. Vidal, R. and West, A. C., J.Electrochem. Soc., 142, 2682 (1995); ibid 142, 2689 (1995).Google Scholar
4. Bertocci, U., J. Electrochem. Soc., 113, 604 (1966).Google Scholar
5. I.Villegas, Ehlers, C. B. and Stickney, J. L., J. Electrochem. Soc., 137, 3143 (1990).Google Scholar
6. Ehlers, C. B., Villegas, I and Stickney, J. L., J. Electroanal. Chem., 284, 403 (1990).Google Scholar
7. Suggs, D. W. and Bard, A. J., J.Phys. Chem., 99, 8349 (1995).Google Scholar
8. Moffat, T. P., in Nanostructured Materials in Electrochemistry, eds. Searson, P. and Meyer, J., PV 95–8, p. 225237, The Electrochemical Society, Inc., Pennington, NJ (1995).Google Scholar
9. Poensgen, M., Wolf, J.F., Frohn, J., Giesen, M. and Ibach, H., Surf. Sci., 274, 430 (1992).Google Scholar
10. Kopatzki, E., Gunther, S., Nichtl-Pecher, W. and Behm, R. J., Surf. Sci., 284, 154 (1993).Google Scholar
11. Breeman, M., Barkema, G. T., Langelaar, M. H. and Boerma, D. O., Thin Solid Films, submitted; M. Breeman and D. O. Boerma, Surf. Sci., 287/288, 881 (1993); G. T. Barkema, O. Biham, M. Breeman, D. O.Boerma, G. Vidali, Surf. Sci., 306, L569 (1994); C-L. Liu, Surf. Sci., 316, 294 (1994); H. Durr, J.F. Wendelken and J-K. Zuo, Surf. Sci., 328, L527 (1995).Google Scholar
12. Yoon, S., Schwartz, M. and Nobe, K., Plating and Surface Finishing, p65, December (1994).Google Scholar
13. Brisard, G. M., Zenati, E., Gasteiger, H. A., Markovic, N. M. and Ross, P. N., Langmuir, 11, 2221 (1995).Google Scholar
14. Holzle, M. H., Zwing, V. and Kolb, D. M., Electrochemica Acta, 40, 1237 (1995); N. Batina, D. M. Kolb and R. J. Nichols, Langmuir, 8, 2572 (1992).Google Scholar
15. Porter, J. D. and Robinson, T. O., J.Phys. Chem., 97, 6696 (1993).Google Scholar
16. Gunther, C., Gunther, S, Kopatzki, E., Hwang, R. Q., Schroder, J., Vrijmoeth, J. and Behm, R. J., Ber. Bunsenges.Phys. Chem., 97, 522 (1993).Google Scholar
17. Electronic Thin Film Science, Tu, K-N., Meyer, J. W. and Feldman, L. C., Macmillan, N.Y., (1992).Google Scholar