Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-03T04:20:29.575Z Has data issue: false hasContentIssue false

An In Situ STM Investigation of Stranski - Krastanov Growth of Ag on Au (111) Electrodes

Published online by Cambridge University Press:  15 February 2011

S. G. Corcoran
Affiliation:
The Johns Hopkins University, Department of Materials Science and Engineering, Baltimore, Maryland 21218
G. S. Chakarova
Affiliation:
The Johns Hopkins University, Department of Materials Science and Engineering, Baltimore, Maryland 21218
K. Sieradzki
Affiliation:
The Johns Hopkins University, Department of Materials Science and Engineering, Baltimore, Maryland 21218
Get access

Abstract

We present in situ scanning tunneling Microscopy (STM) results which show the morphological aspects of Ag electrodeposition on Au (111). The experimental conditions enabled us to follow, in real time, with monolayer resolution, the morphological details of Stranski-Krastanov (SK) growth under a fixed electrochemical potential (constant supersaturation). Two epitaxial layers of Ag were sequentially formed prior to the heterogeneous nucleation of three-dimensional Ag crystallites. STM images are presented showing that the second silver monolayer has a coarsened (surface) diffusion-limited-aggregation growth front. IMMediately after the completion of the second silver monolayer which took approximately five Minutes, we observed the formation of 3D clusters preferentially at step edges. Our analysis of the SK growth process indicates that it is not well described by heterogeneous-nucleation thermodynamics owing to the almost identical lattice parameters of Ag and Au. Instead, we argue that the wetting-nonwetting transition we observed was kinetically stabilized by the relatively high activation energy involved with the motion of Ag adatoms over a descending Ag step.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. see for example, Kolb, D. M., in Advances in Electrochemistry and Electrochemical Engineering, edited by Genscher, H. and Tobias, Ch.W. (Wiley, New York, 1978), 11, p. 125 Google Scholar
Jiittner, K. and Lorenz, W. J., Zeitschrift für Physikalische Chemie Neue Folge, 122, 163 (1980).CrossRefGoogle Scholar
2. Bauer, E., Z.Kristallogr., 110, 372 (1958).CrossRefGoogle Scholar
3. Obretenov, W., Schmidt, U., Lorenz, W. J., Staikov, G., Budevski, E., Carnal, D., Müller, U., Siegenthaler, H., and Schmidt, E., J. Electrochem. Soc, 140, 692 (1993).Google Scholar
4. Staikov, G., Budevski, E., Obretenov, W., and Lorenz, W.J., J.Electroanal. Chem., 349, 355 (1993).Google Scholar
5. Melroy, O.R., Toney, M.F., Borges, G.L., Samant, M.G., Kortright, J.B., Ross, P.N., and Blum, L., J. Electroanal. Chem., 258, 403 (1989).Google Scholar
6. Nichols, R.J., Beckmann, W., Meyer, H., Batina, N. and Kolb, D.M., J.Electroanal. Chem., 330, 381 (1992).CrossRefGoogle Scholar
7. Batina, N., Will, T. and Kolb, D. M., Faraday Discuss., 94, 93 (1992).CrossRefGoogle Scholar
8. Corcoran, S.G., Chakarova, G.S., and Sieradzki, K., Phys. Rev. Lett., 71, 1585 (1993).Google Scholar
9. Corcoran, S.G., Chakarova, G.S. and Sieradzki, K. submitted to J. Electroanal. Chem.Google Scholar
10. Corcoran, S.G., Chakarova, G.S. and Sieradzki, K. in preparation.Google Scholar
11. Corcoran, S.G., Chakarova, G.S. and Sieradzki, K. in preparation.Google Scholar
12. Chen, C., Vesecky, S. M. and Gewirth, A. A., J. Am. Chem. Soc, 114, 451 (1992).CrossRefGoogle Scholar
13. Pauling, H.J. and Jüttner, K., Electrochimica Acta, 37, 2237 (1992).Google Scholar
14. Dovek, M.M., Lang, C.A., Nogami, J., and Quate, C.F., Phys. Rev. B., 40, 11973 (1989).CrossRefGoogle Scholar
15. Chambliss, D.D. and Wilson, R.J., J. Vac. Sci. Technol. B, 9, 928 (1991).Google Scholar
16. van der Vegt, H.A., van Pinxteren, H.M., Lohmeier, M., Vlieg, E., and Thornton, J.M.C., Phys. Rev. Lett., 68, 3335 (1992).Google Scholar
17. Rosenfeld, G., Servaty, R., Teichert, C., Poelsema, B., and Comsa, G., Phys. Rev. Lett., 71, 895 (1993).CrossRefGoogle Scholar
18. Kunkel, R., Poelsema, B., Verheij, L.K., and Comsa, G., Phys. Rev. Lett., 65, 733 (1990).Google Scholar
19. Basse, D.W., Surf. Sci., 53, 74 (1975).Google Scholar
20. Liu, C.L., and Adams, J.B., Surf. Sci., 265, 262 (1992).Google Scholar