Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T02:06:44.971Z Has data issue: false hasContentIssue false

An Exact Approach to the Diluted Hubbard Model

Published online by Cambridge University Press:  01 January 1992

Chumin Wang
Affiliation:
Instituto de Investigaciones en Materiales, U.N.A.M.Apartado Postal 70-360, 04510, México D.F., MEXICO
O. Navarro
Affiliation:
Instituto de Investigaciones en Materiales, U.N.A.M.Apartado Postal 70-360, 04510, México D.F., MEXICO
R. Oviedo-Roa
Affiliation:
Instituto de Investigaciones en Materiales, U.N.A.M.Apartado Postal 70-360, 04510, México D.F., MEXICO
Get access

Abstract

A new method to solve the extended Hubbard Hamiltonian for systems with few electrons is reported. This method is based on mapping the original many-body problem onto a tight-binding one in a higher dimensional space, which can be solved exactly. For one-and two-dimensional periodic lattices, the real-space pairing problem of two electrons with parallel and anti-parallel spins is analyzed by looking at the binding energy, the coherence length and the mobility of electron pairs. Likewise, some results of the three-body correlation are also reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Pickett, W.E., Rev. Mod. Phys. 61, 433 (1989).Google Scholar
[2] Micnas, R., et al. , Rev. Mod. Phys. 62, 113 (1990).Google Scholar
[3] Lieb, E.H. and Wu, F.Y., Phys. Rev. Lett. 20, 1445 (1968).Google Scholar
[4] Metzner, W. and Vollhardt, D., Phys. Rev. Lett. 62, 324 (1989).Google Scholar
[5] Barrio, R.A., Wang, C., Martínez, J. Tagüeña, Jara, D. Rios, Akachi, T., and Escudero, R., Mat. Res. Soc. Symp. 99, 801 (1988).Google Scholar
[6] Kotliar, G. and Ruckenstein, A.E., Phys. Rev. Lett. 57, 1362 (1986).Google Scholar
[7] Balseiro, C.A., et al. Phys. Rev. Lett. 62, 2624 (1989).Google Scholar
[8] White, S.R., et al. Phys. Rev. Lett. 63, 1523 (1989).Google Scholar
[9] Hirsch, J.E., Phys. Rev. B 20, 5259 (1980).Google Scholar
[10] Callaway, J., et al. Phys. Rev. B 42, 465 (1990).Google Scholar
[11] Falicov, L.M. and Yndurain, F., J. Phys. C 8, 147 (1975).Google Scholar
[12] Navarro, O. and Wang, C., Solid State Commun. 83, 473 (1992).Google Scholar
[13] Bardeen, J., Cooper, L.N., and Schrieffer, J.R., Phys. Rev. 108, 1175 (1957).Google Scholar
[14] Barrera, R.G. (private communication).Google Scholar