Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T07:36:41.247Z Has data issue: false hasContentIssue false

An Atomistic Study of Ti Segregation to Lamellar Interfaces in Ti-RICH TiAl

Published online by Cambridge University Press:  10 February 2011

K. Ito
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104–6272.
V. Vitek
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104–6272.
Get access

Abstract

In this paper we analyze the effect of the surplus of titanium in the bulk on γ/γ interfaces. Monte Carlo calculations using a central force many-body potential suggest that in Ti rich alloys titanium segregates to the 120° rotational fault and the pseudotwin. This leads to the formation of a thin region of the DO19 Ti3Al at these interfaces. While titanium does not segregate to the ordered twin, it does to the ordered twin with the APB. But in this case the interface dissociates into the 120° rotational fault and the pseudotwin. The calculations further show that there are two types of atomic sites at the interfaces. One is the same as in the ideal L10 the other, to which the segregation takes place, is specific for interfaces parallel to {111} planes. The specific distribution of the sites favored for segregation is the reason why segregation leads to the formation of a narrow region of the DO19 Ti3Al in the 120° rotational fault and the pseudotwin.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sastry, S. M. L. and Lipsitt, H. A., Metall. Trans. A 8, 299 (1977).Google Scholar
2. Yamaguchi, M., Inui, H., Kishida, K., Matsumuro, M. and Shirai, Y., in High-Temperature Ordered Intermetallics Alloys VI. edited by Horton, J., Baker, I., Hanada, S., Noebe, R.D. and Schwartz, D. (Mater. Res. Soc. Proc 364, Pittsburgh, PA, 1995), p. 3.Google Scholar
3. Huang, S. C and Chestnut, J. C., in Intermetallic Compounds-Principles and Practice, edited by Westbrook, J.H. and Fleischer, R.I. (John Wiley & Sons, New York, 1995), p. 73.Google Scholar
4. Froes, F. H. and Suryanarayama, C., in Physical Metallurgy and Processing of Intermetallics Compounds, edited by Stoloff, N.S. and Sikka, V.K. (Chapman & Hall, New York, 1996), p. 297.Google Scholar
5. Naka, S., Curr. Opin. Solid State Mat. Sci., 1, 333 (1996).Google Scholar
6. Yamaguchi, M., Inui, H., Yokoshima, S., Kishida, K. and Johnson, D.R., Mater. Sci. Eng. A, 213, 25 (1996).Google Scholar
7. Huang, S. C., Hall, E. L. and Gigliotti, M. F. X., in High Temperature Ordered Intermetallics Alloys II. edited by Stoloff, N. S., Koch, C. C., Liu, C. T. and Izumi, O. (Mater. Res. Soc. Proc 81, Pittsburgh, PA, 1987), p. 481.Google Scholar
8. Fujiwara, T., Nakamura, A., Hosomi, M., Nishitani, S. R., Shirai, Y. and Yamaguchi, M., Phil. Mag. A 61, 591 (1990).Google Scholar
9. Yamaguchi, M., Metals and Technology 60, 34 (1990).Google Scholar
10. Inui, H., Oh, M. H., Nakamura, A. and Yamaguchi, M., Phil. Mag. A 66, 539 (1992).Google Scholar
11. Court, S.A., Vasudevan, V. K. and Fraser, H. L., Phil. Mag. A 61, 141 (1990).Google Scholar
12. McCullough, C., Valencia, J. J., Mateous, H., Levi, C. G., Mehrabian, R. and Rhyne, K. A., Scripta Metall. 22, 1131 (1988).Google Scholar
13. Inui, H., Kishida, K., Kobayashi, M., Yamaguchi, M., Kawasaki, M. and Ibe, K., Phil. Mag. A 74, 451 (1996).Google Scholar
14. Schwartz, D. S. and Sastry, S. M. L., Scripta Metall. 23, 1621 (1989).Google Scholar
15. Pearson, W. B., Handbook of Lattice Spacings and Structures of Metals and Alloys. Pergamon Press, Oxford, 1967.Google Scholar
16. Kad, B. K. and Hazzledine, P. M., Phil. Mag. Lett. 66, 133 (1992).Google Scholar
17. Denquin, A. and Naka, S., Phil. Mag. Lett. 68, 13 (1993).Google Scholar
18. Rao, S., Woodward, C. and Hazzledine, P. M., in Defect-Interface Interactions, edited by Kvam, E. P., King, A. H., Mills, M. J., Sands, T. D. and Vitek, V. (Mater. Res. Soc. Proc 319, Pittsburgh, PA, 1994), p. 285.Google Scholar
19. Ricolleau, C., Denquin, A. and Naka, S., Phil. Mag. Lett. 69, 197 (1994).Google Scholar
20. Inui, H., Nakamura, A., Oh, M.H. and Yamaguchi, M., Ultramicroscopy 39, 268 (1991).Google Scholar
21. Girschick, A. and Vitek, V., in High-Temperature Ordered Intermetallics Alloys VI. edited by Horton, J., Baker, I., Hanada, S., Noebe, R.D. and Schwartz, D. (Mater. Res. Soc. Proc 364, Pittsburgh, PA, 1995), p. 145.Google Scholar
22. Vitek, V., Girshick, A., Siegl, R., Inui, H. and Yamaguchi, M., M., , in Properties of Complex Inorganic Solids, edited by Gonis, A., Meike, A.-M. and Turchi, P. E. A. (Plenum Press: New York, 1997), p. 355.Google Scholar
23. Foiles, S.M., Phys. Rev. B 32, 7685 (1985).Google Scholar
24. Foiles, S.M., Surf. Sci. 191, 329 (1987).Google Scholar
25. Yan, M. and Vitek, V., Interface Sci. 3, 17 (1995).Google Scholar
26. Vitek, V. and Yan, M., in Physical Metallurgy and Processing of Intermetallic Compounds. edited by Stoloff, N.S. and Sikka, V.K. (Chapman & Hall, New York, 1996), p. 28.Google Scholar
27. Vitek, V., Ito, K., Siegl, R. and Znam, S., Mater. Sci. Eng. A, in print (1997).Google Scholar
28. Fu, C. L. and Yoo, M. H., Phil. Mag. Lett. 62, 159 (1990).Google Scholar