Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:32:34.574Z Has data issue: false hasContentIssue false

An Analytical Approach for Computing the Energy Structure of InAs Quantum Dots

Published online by Cambridge University Press:  17 March 2011

Valeria G. Stoleru
Affiliation:
Department of Electrical Engineering, University of Virginia, 351 McCormick Road, Charlottesville, VA 22904-4743, U.S.A.
Debdas Pal
Affiliation:
Department of Electrical Engineering, University of Virginia, 351 McCormick Road, Charlottesville, VA 22904-4743, U.S.A.
Elias Towe
Affiliation:
Department of Electrical Engineering, University of Virginia, 351 McCormick Road, Charlottesville, VA 22904-4743, U.S.A.
Get access

Abstract

The experimental and theoretical results of the electronic structure of self-assembled InAs/GaAs quantum dots are presented. We have performed analytical calculations to obtain the spatial strain distribution in truncated pyramidally-shaped InAs quantum dots grown on (001) GaAs substrates by molecular beam epitaxy. The model reproduces our cross sectional high- resolution transmission electron microscopy observations very well. We further take into account the microscopic effects of the spatial strain distribution on carrier confinement potentials. The effects of piezoelectricity have been neglected in our calculations since they minimally affect the energy levels involved in optical transition. The dots considered here are assumed to be in the strong confinement regime; so Coulomb interaction is neglected. Our calculations of the peak luminescence energies are in good agreement with our experimental results and those of others. The calculated energy separation between the ground and the excited states for electrons and for heavy-holes is in very good agreement with the available photoluminescence, capacitance and far- infrared absorption data.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bimberg, D., Grundmann, M., and Ledentsov, N. N., Quantum Dot Heterostructures, (John Wiley & Sons, UK, 1998).Google Scholar
2. Ledentsov, N. N., Shchukin, V. A., Grundmann, M., Kristaedter, N., hrer, J. Bö, Schmidt, O., Bimberg, D., Ustinov, V. M., Egorov, A. Yu., Zhukov, A. E., Kop'ev, P. S., Zaitsev, S. V., Gordeev, N. Yu., Alferov, Zh. I., Borovkov, A. I., Kosogov, A. O., Rvimov, S. S., Werner, P., Gosele, U., and Heydenreich, J., Phys. Rev. B 54, 8743 (1996).Google Scholar
3. Yokoyama, N., Muto, S., Imamura, K., Takatsu, M., Mori, T., Sugiyama, Y., Sakuma, Y., Nakao, H., and Adachihara, T., Solid-State Electron. 40, 505 (1996).Google Scholar
4. Pan, D., Towe, E., and Kennerly, S., Appl. Phys. Lett. 73, 1937 (1998).Google Scholar
5. Grundmann, M., Stier, O., and Bimberg, D., Phys. Rev. B 52, 11969 (1995).Google Scholar
6. Cusack, M., Briddon, P. R., and Jaros, M., Phys. Rev. B 54, R2300 (1996).Google Scholar
7. Pryor, C., Phys. Rev. B 57, 7190 (1998); 60, 2869 (1999).Google Scholar
8. Kim, J., Wang, L.-W., Zunger, A., Phys. Rev. B 57, R9408 (1998).Google Scholar
9. Zhang, K., Heyn, Ch., and Hansen, W., Appl. Phys. Lett. 76, 2229 (2000).Google Scholar
10. Sutter, P. and Lagally, M. G., Phys. Rev. Lett. 81, 3471 (1998).Google Scholar
11. Eshelby, J. D., Proc. R. Soc. London, Ser. A 241, 376 (1957).Google Scholar
12. Faux, D. A., Downes, J. R., and O'Reilly, E. P., J. Appl. Phys. 82, 3754 (1997); 81, 6700 (1997).Google Scholar
13. Williamson, A. J. and Zunger, A., Phys. Rev. B 59, 15819 (1999).Google Scholar
14. Marzin, J.-Y. and Bastard, G., Solid State Commun. 92, 437 (1994).Google Scholar
15. Stoleru, V. G. and Towe, E., presented at 27th International Symposium on Compound Semiconductors (ISCS 2000), Monterey, CA, 2000 (to appear in “GaAs and Related Materials, 2001).Google Scholar
16. Pollak, F. H., Semicond. Semimet. 32, 17 (1990).Google Scholar
17. Bir, G. L. and Pikus, G. E., Symmetry and Strain-Induced Effects in Semiconductors, (Wiley, New York, 1974).Google Scholar
18. Stier, O., Grundmann, M., and Bimberg, D., Phys. Rev. B 59, 5688 (1999).Google Scholar