Article contents
An Alternative Model for the Kinetics of Light-Induced Defects in A-Si:H
Published online by Cambridge University Press: 21 February 2011
Abstract
The kinetics of light-induced defect generation in a-Si:H was investigated over a wide range of illumination intensities and temperatures. The defect density around 1016cm-3 exhibits a power-law time dependence Ns ∼ G2εfε with ε = 0.2 to 0.3, where G is the photo-carrier generation rate. A model for the kinetics of defect generation is proposed based on the existence of an exponential distribution of defect formation energies in the amorphous network, associated with the valence band tail states. The model reproduces the observed time dependence of the defect density with an exponent e determined by the exponential width of the valence band tail. The temperature dependence of the defect generation rate is well-reproduced by the model, which provides a connection between the Stabler-Wronski effect and the weak-bond model.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1991
References
- 3
- Cited by