Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T06:55:54.817Z Has data issue: false hasContentIssue false

An Ab-Initio Multicenter Tight-Binding Model for Molecular Dynamics Simulations

Published online by Cambridge University Press:  28 February 2011

Otto F. Sankey
Affiliation:
Arizona State University, Department of Physics, Tempe, AZ 85287
David J. Niklewski
Affiliation:
Arizona State University, Department of Physics, Tempe, AZ 85287
Get access

Abstract

A new, approximate method has been developed for computing total energies and forces for a variety of applications including molecular dynamics simulations of covalent materials. The method is tight-binding-like and is based on the local density approximation within the pseudopotential scheme. Slightly excited pseudo-atomic-orbitals are used, and the tight-binding Hamiltonian matrix is obtained in real space. The method is used to find the total energies for five crystalline phases of Si and the Si 2 molecule. Excellent agreement is found with experiment. A molecular dynamics simulated annealing study has been performed on the Si 3 molecule to determine the ground state configuration.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Stillinger, F. H., and Weber, T.A., Phys. Rev. B 31, 5262 (1985); M.I. Baskes, Phys. Rev. Lett. 59, 2666 (1987); M.I. Biswas and D.R. Hamann, Phys. Rev. Lett. 55, 2001 (1985); J. Tersoff, Phys. Rev. Lett. 56, 632 (1986).Google Scholar
[2]Car, R., and Parrinello, M., Phys. Rev. Lett. 55, 2471 (1985); M.C. Payne, J. D. Joannopolous, D. C. Allen, M. P. Teter, and D. H. Vanderbilt, Phys. Rev. Lett. 56, 2656 (1986); M. Needles, M.C. Payne, and J.D. Joannopolous, Phys. Rev. Lett. 58, 1765 (1987)D.C. Allan, and M.P. Teter, Phys. Rev. Lett. 59, 1136 (1987).Google Scholar
[3]Sankey, O. F., and Allen, R. E., Phys. Rev. B 33, 7164 (1986).Google Scholar
[4]Allen, R.E., and Menon, M., Phys. Rev. B 33, 5611 (1986); M. Menon, and R.E. Allen, Phys. Rev. B33, 7099 (1986); Superlattices and Microstructures 3, 295 (1987); Solid State Commun. 64, 53 (1987).Google Scholar
[5]Niklewski, D.J., and Sankey, O.F., to be published; O.F.Sankey, and D.J. Niklewski, Proceedings of Atomistic Modeling of Materials: Beyond Pair Potentials., World Materials Congress, Chicago IL,1988.Google Scholar
[6]Jansen, R.W., and Sankey, O.F., Phys. Rev. B 36, 6520 (1987).Google Scholar
[7]Harris, J., Phys. Rev. B 31, 1770 (1985)Google Scholar
[8]Foulkes, W.M.C., Ph.D. Thesis, University of Cambridge, 1987.Google Scholar
[9]Polatoglou, H.M., and Methfessel, M., Phys.Rev. B 37, 10403 (1988).Google Scholar
[10]Ceperly, D.M., and Alder, G.J., Phys. Rev. Lett. 45, 566 (1980). Parametrized by J. Perdew and A. Zunger, Phys. Rev. B23, 5048 (1981).Google Scholar
[11]Hamann, D., Schluter, M., and Chiang, C., Phys. Rev. Lett. 43, 1494 (1979).Google Scholar
[12]Yin, M.T., and Cohen, M.L., Phys. Rev. B 26, 5668 (1982).Google Scholar
[13]Diercksen, G.H.F., Gruner, N.E., Oddershele, J., and Sabin, J.R., Chem. Phys. Lett. 117, 29 (1985); R.S. Grev, and H.F.S. Schaefer, Chem. Phys. Lett. 119, 111 (1985).Google Scholar