Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T07:45:31.540Z Has data issue: false hasContentIssue false

Amorphous W-Zr Films As Diffusion Barriers Between Al And Si

Published online by Cambridge University Press:  26 February 2011

F. C. T. So
Affiliation:
California Institute of Technology, Pasadena, CA 91125
X.-A. Zhao
Affiliation:
Shanghai Institute of Metallurgy, Academy of Sciences of China, Shanghai, China
E. Kolawa
Affiliation:
California Institute of Technology, Pasadena, CA 91125
J. L. Tandon
Affiliation:
Applied Solar Energy Corporation, City of Industry, CA 91749
M. F. Zhu
Affiliation:
Graduate School, University of Science and Technology of China, Beijing, China
M-A. Nicolet
Affiliation:
California Institute of Technology, Pasadena, CA 91125
Get access

Abstract

Cosputtered W70Zr30 and W40Zr60 films are investigated as diffusion barriers between Al and Si. W-Zr alloys of both compositions were determined by x-ray diffraction to crystallize at 900°C on Al2O3 substrates. On <111>Si the W-Zr alloy reacts with the substrate above 700°C, forming a uniform, polycrystal line layer of W and Zr suicides. Despite the high crystallization temperatures, an Al overlayer interacts with W-Zr and the Si substrate at ∼500°C. MeV He backscattering spectrometry, SEM and EDAX indicate that this reaction is laterally nonuniform with the formation of deep pits penetrating into the Si substrate. We believe this to be a consequence of fractures in the W-Zr layer induced by reaction with Al. Electrical measurements on shallow junction diodes with <Si>/W-Zr/Al contacts show that the device junctions were thermally stable after a 30 min annealing at 450°C but were all shorted after heat treatments at 500°C or above.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nicolet, M-A., Thin Solid Films, 54, 415 (1978).Google Scholar
2. Nicolet, M-A. and Bartur, M., J. Vac. Sci. Technol., 19, 786 (1981).Google Scholar
3. Bower, R. W., Appl. Phys. Lett., 23, 99 (1973).Google Scholar
4. Ting, C. Y. and Crowder, B. L., J. Electrochem. Soc, 129, 2590 (1982).Google Scholar
5. Bartur, M. and Nicolet, M-A., Appl. Phys. Lett., 39, 822 (1981).Google Scholar
6. Ting, C. Y. and Wittmer, M., J. Appl. Phys., 54, 937 (1983).Google Scholar
7. Ting, C. Y. and Wittmer, M., Thin Solid Films, 96, 327 (1982).Google Scholar
8. Canali, C., Celotti, G., Fantini, F. and Zanoni, E., Thin Solid Films, 88, 9 (1982).Google Scholar
9. Nicolet, M-A., Suni, I. and Finetti, M., Solid State Technol., 26, 129 (1983).Google Scholar
10. Suni, I., Nicolet, M-A., Pai, C. S. and Lau, S. S., Thin Solid Films, 107, 73 (1983).Google Scholar
11. Zhu, M. F., So, F. C. T., Pan, E. T-S. and Nicolet, M-A., Phys. Stat. Sol. (a), 86, 471 (1984).Google Scholar
12. Bartur, M. and Nicolet, M-A., J. Electrochem. Soc, 131, 1118 (1984).Google Scholar
13. Howard, J. K., Lever, R. F., Smith, P. J. and Ho, P. S., J. Vac. Sci. Technol., 13, 68 (1976).Google Scholar
14. Lien, C.-D. and Nicolet, M-A., J. Vac. Sci. Technol. B2, 4, 738 (1984).Google Scholar
15. Finetti, M., Suni, I. and Nicolet, M-A., J. of Electronic Materials, 13, 327, (1984).Google Scholar
16. Nicolet, M-A. and Lau, S. S., in: VLSI Electronics: Microstructure Science, Einspruch, N. G., ed., Vol. 6, Materials and Process Characterization, Einspruch, N. G. and Larrabee, G. B., eds., Academic Press, (New York, 1983) Chapter 6.Google Scholar
17. Zhu, M. F., Suni, I., Nicolet, M-A. and Sands, T., J. Appl. Phys., 56, 2740 (1984).Google Scholar
18. Saris, F. W., Hung, L. S., Nastasi, M., Mayer, J. W. and Whitehead, B., Appl. Phys. Lett., 46, 646 (1985).Google Scholar
19. Appelbaum, A., Eizenberg, M., and Brener, R., Vacuum, 33, 227 (1983).Google Scholar
20. Appelbaum, A. and Eizenberg, M., J. Appl. Phys., 56, 2341 (1984).Google Scholar
21. Palmström, C. J., Gyulai, J. and Mayer, J. w., J. Vac. Sci. Technol. Al, 2, 452 (1983).Google Scholar
22. Babcock, S. E. and Tu, K. N., J. Appl. Phys., 53, 6898 (1982).Google Scholar
23. So, F. C. T., Zhao, X.-A. and Nicolet, M-A. (unpublished).Google Scholar
24. van Gurp, G. J., C Daams, J. L., van Oostrom, A., Augustus, L. J. M. and Tamminga, Y., J. Appl. Phys., 50, 6915, (1979).Google Scholar
25. van Gurp, G. J., Reukers, W. M., J. Appl. Phys., 50, 6923 (1979).Google Scholar
26. Zhu, M. F., So, F. C. T. and Nicolet, M-A., Thin Solid Films, 130 (1985) (in press).Google Scholar
27. Kattelus, H. P., Kolawa, E., Affolter, K. and Nicolet, M-A., J. Vac. Sci. Technol. A, (1985) (in press).Google Scholar
28. Wittmer, M., J. Vac. Sci. Technol. A2, 2, 273 (1984).Google Scholar
29. Wiley, J. D., Perepezko, J. H., Nordman, J. E., Guo, K.-J., IEEE Trans. Ind. Electron., IE–29, 154 (1982).Google Scholar