Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T17:48:56.600Z Has data issue: false hasContentIssue false

Amorphous Silicon-Germanium Deposited by Photo-CVD: Effect of Hydrogen Dilution and Substrate Temperature

Published online by Cambridge University Press:  26 February 2011

R. E. Rocheleau
Affiliation:
Institute of Energy Conversion University of Delaware, Newark DE 19716
R. M. Tullman
Affiliation:
Institute of Energy Conversion University of Delaware, Newark DE 19716
D. E. Albright
Affiliation:
Institute of Energy Conversion University of Delaware, Newark DE 19716
S. S. Hegedus
Affiliation:
Institute of Energy Conversion University of Delaware, Newark DE 19716
Get access

Abstract

The effects of substrate temperature and hydrogen dilution on mobilitylifetime product and hydrogen bonding are reported for amorphous silicongermanium films with bandgaps from 1.1 to 1.74 eV deposited by Hg-sensitized photo-CVD. The ratio of dihydride to monohydride bonding and preferential H attachment to silicon both decreased with hydrogen dilution. The best films were deposited with hydrogen dilution at substrate temperatures between 230 and 250 ° C. Model equations used to calculate radical fluxes to the substrate are described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Konagai, M., in Materials Issues in Amorphous Semiconductor Technology, edited by Adler, D., Hamakawa, Y., Madan, A., (MRS Proc. 70, Pittsburgh, PA, 1986)257.Google Scholar
2. Hegedus, Steven S., Tullman, R.M., Lin, H.S., Cebulka, J.M., Buchanan, W.A., Dozier, R., Rocheleau, R.E., Proc. of 19th IEEE Photovoltaic Spec. Conf. 867(1987).Google Scholar
3. Rocheleau, R.E., Hegedus, S.S., Buchanan, W.A., Jackson, S.C., Appl. Phys. Lett. 51(2), 133(1987).Google Scholar
4. Rocheleau, R.E. and Jackson, S.C., U.S.Patent No 4,654,226, March 31, 1987 Google Scholar
5. Rocheleau, Richard E., Hegedus, Steven S., Buchanan, Wayne, Tullman, Robert, Proc.of 19th IEEE Photovoltaic Spec. Conf. 699(1987).Google Scholar
6. Rocheleau, R.E., Jackson, S.C., Hegedus, S.S., Baron, B.N., in Materials Issues in Amorphous Semiconductor Technology, edited by Adler, D., Hamakawa, Y., Madan, A.,(MRS Proc. 70, Pittsburgh, PA, 1986)37.Google Scholar
7. Yamanaka, S., Yoshida, S., Konagai, M., Takahashi, K., Jpn. J. Appl. Phys. 26,1107(1987).Google Scholar
8. Shibata, N., Fukuda, K., Ohtoshi, H., Hanna, J., Oda, S., Shimizu, I., Jpn. J. Appl. Phys. 26(1),L1O(1987).Google Scholar
9. Austin, E.R. and Lamp, F.W., J. Phys Chem., 81, 12(1977)Google Scholar
10. Yarwood, A., Strausz, D., and Gunning, H., J. Chem. Phys. 41(6), 1705(1964).Google Scholar
11. Rousseau, Y. and Mains, G., J. Phys. Chem., 70(10), 315B(1966).Google Scholar
12. Perrin, J. and Broekhuizen, T., Appl. Phys. Lett. 50(8), 433(1987).Google Scholar