Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-20T06:42:17.776Z Has data issue: false hasContentIssue false

Amorphous Silicon Films and Superlattices Grown by Molecular Beam Epitaxy: An Optical Analysis

Published online by Cambridge University Press:  01 February 2011

D. J. Lockwood
Affiliation:
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
J.-M. Baribeau
Affiliation:
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
M. Noël
Affiliation:
Institute for National Measurement Standards, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
J. C. Zwinkels
Affiliation:
Institute for National Measurement Standards, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
B. J. Fogal
Affiliation:
Faculty of Engineering, University of Regina, Regina, Saskatchewan, Canada S4S 0A2
F. Orapunt
Affiliation:
Faculty of Engineering, University of Regina, Regina, Saskatchewan, Canada S4S 0A2
S. K. O'leary
Affiliation:
Faculty of Engineering, University of Regina, Regina, Saskatchewan, Canada S4S 0A2
Get access

Abstract

We produce a novel form of amorphous silicon through ultra-high-vacuum molecular beam epitaxy. By depositing silicon atoms onto a fused quartz substrate at temperatures between 98 and 335°C, we obtain a silicon-based material that lacks the characteristic periodicity of crystalline silicon but nevertheless has 98% of its density. The impurity content of this material is studied through infrared and secondary ion mass spectroscopies. The primary impurity found is oxygen, with hydrogen and carbon atoms also being found at trace levels. The Raman spectra of the amorphous silicon films are measured and the results, as they relate to the presence of disorder, are interpreted. We also use this molecular beam epitaxy method to fabricate a number of amorphous silicon superlattices, comprised of thin layers of amorphous silicon separated with even thinner layers of SiO2. The optical properties of the films and superlattices are contrasted.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Street, R. A., Hydrogenated Amorphous Silicon (Cambridge, New York, 1991).Google Scholar
[2] Brodsky, M. H., Cardona, M., and Cuomo, J. J., Phys. Rev. B 16, 3556 (1977).Google Scholar
[3] Staebler, D. L. and Wronski, C. R., Appl. Phys. Lett. 31, 292 (1977).Google Scholar
[4] Biswas, R. and Pan, B. C., Appl. Phys. Lett. 72, 371 (1998).Google Scholar
[5] Anderson, D. A., Moddel, G., Paesler, M. A., and Paul, W., J. Vac. Sci. Technol. 16, 906 (1979).Google Scholar
[6] Hanabusa, M. and Suzuki, M., Appl. Phys. Lett. 39, 431 (1981).Google Scholar
[7] Yamada, I., Nagai, I., Horie, M., and Takagi, T., J. Appl. Phys. 54, 1583 (1983).Google Scholar
[8] Brockhoff, A. M., Ullersma, E. H. C., Meiling, H., Habraken, F. H. P. M., and Weg, W. F. van der, Appl. Phys. Lett. 73, 3244 (1998).Google Scholar
[9] Feenstra, K. F., Schropp, R. E. I., and Weg, W. F. Van der, J. Appl. Phys. 85, 6843 (1999).Google Scholar
[10] Lockwood, D. J., Baribeau, J.M., Noël, M., Zwinkels, J. C., Fogal, B. J., and O'Leary, S. K., Mat. Res. Soc. Symp. Proc. 609, A5.1 (2000).Google Scholar
[11] Fogal, B. J., O'Leary, S. K., Lockwood, D. J., Baribeau, J.M., Noël, M., and Zwinkels, J. C., Solid State Commun. 120, 429 (2001).Google Scholar
[12] O'Leary, S. K., Fogal, B. J., Lockwood, D. J., Baribeau, J.M., Noël, M., and Zwinkels, J. C., J. Non-Cryst. Solids 290, 57 (2001).Google Scholar
[13] Baribeau, J.M., Lockwood, D. J., Dharma-wardana, M. W. C., Rowell, N. L., and McCaffrey, J. P., Thin Solid Films 183, 17 (1989).Google Scholar
[14] Parratt, L. G., Phys. Rev. 95, 359 (1954).Google Scholar
[15] Croce, P. and Névot, L., Rev. de Phys. Appl. 11, 113 (1976).Google Scholar
[16] Zhang, P. X., Mitchell, I. V., Tong, B. Y., Schultz, P. J., and Lockwood, D. J., Phys. Rev. B 50, 17080 (1994).Google Scholar
[17] Denton, R. E., Campbell, R. D., and Tomlin, S. G., J. Phys. D 5, 852 (1972).Google Scholar
[18] Ley, L., in The Physics of Hydrogenated Amorphous Silicon II, Vol. 56 of Topics in Applied Physics, edited by Joannopoulos, J.D. and Lucovsky, G., (Springer-Verlag, New York, 1984), p. 61.Google Scholar
[19] Gupta, S., Katiyar, R. S., Morell, G., Weisz, S. Z., and Balberg, I., Appl. Phys. Lett. 75, 2803 (1999).Google Scholar
[20] Sokolov, A. P., Shebanin, A. P., Golikova, O. A., Mezdrogina, M. M., J. Phys. Cond. Matt. 3, 9887 (1991).Google Scholar
[21] Abeles, B. and Tiedje, T., Phys. Rev. Lett. 51, 2003 (1983).Google Scholar
[22] Lockwood, D. J., Lu, Z. H., and Baribeau, J.M., Phys. Rev. Lett. 76, 539 (1996).Google Scholar
[23] Lockwood, D. J., Baribeau, J.M., Noël, M., Zwinkels, J. C., Fogal, B. J., and O'Leary, S. K., Solid State Commun. (in press).Google Scholar
[24] Collins, R.W. and Huang, C.Y., Phys. Rev. B 34, 2910 (1986).Google Scholar