Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T03:27:24.067Z Has data issue: false hasContentIssue false

Amorphization of Crystalline Phase Change Material by Ion Implantation

Published online by Cambridge University Press:  01 February 2011

Simone Raoux
Affiliation:
[email protected], IBM T. J. Watson Research Center, Yorktown Heights, New York, United States
Guy Cohen
Affiliation:
[email protected], IBM T. J. Watson Research Center, IBM/Macronix PCRAM Joint Project, Yorktown Heights, New York, United States
Robert M. Shelby
Affiliation:
[email protected], IBM Almaden Research Center, San Jose, California, United States
Huai-Yu Cheng
Affiliation:
[email protected], Macronix Emerging Central Lab., IBM/Macronix PCRAM Joint Project, Hsinchu, Taiwan, Province of China
Jean L Jordan-Sweet
Affiliation:
[email protected], IBM T.J. Watson Research Center, Yorktown Heights, New York, United States
Get access

Abstract

Germanium ion implantation at an energy of 30 keV was used as a different method to re-amorphize thin films of crystalline phase change material Ge2Sb2Te5 (GST). It was found that rather low doses of 5×1013 cm-2 were sufficient to re-amorphize GST. Amorphization was determined by X-ray diffraction (XRD) as well as reflectivity measurements. Re-crystallization characteristics of ion-implantation-amorphized samples was studied using time-resolved XRD. It showed that samples re-crystallize at an increased crystallization temperature with increasing dose compared to as-deposited material. A static laser tester was applied to measure the crystallization times of material that was (1) as–deposited amorphous; (2) crystallized by annealing and re-amorphized by melt-quenching using a laser pulse; and (3) crystallized by annealing and re-amorphized by ion implantation. It was found that as-deposited amorphous and high-dose ion implanted samples had longer crystallization times while melt-quenched amorphous and low-dose ion implanted samples had shorter crystallization times.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Phase Change Materials: Science and Applications, Eds. Raoux, S. and Wuttig, M. Springer, Berlin, 2009.Google Scholar
[2] Wuttig, M. and Yamada, N. Nature Mater., 6, 824 (2007).Google Scholar
[3] Raoux, S. Burr, G. W. Breitwisch, M. J. Rettner, C. T. Chen, Y. C. Shelby, R. M. Salinga, M., Krebs, D. Chen, S.-H., Lung, H.-L., and Lam, C. H. IBM J. of Research and Development, 52, 465 (2008).Google Scholar
[4] Braun, W. Shayduk, R. Flissikowski, T. Ramsteiner, M. Grahn, H. T. Riechert, H. Fons, P., and Kolobov, A. Appl. Phys. Lett. 94, 041902 (2009).Google Scholar
[5] Lee, S.-H., Jung, Y. and Agarwal, R. Nature Nanotechnology, 2, 626 (2007).Google Scholar
[6] Lee, S.-H., Ko, D.-K., Jung, Y. and Agarwal, R. Appl. Phys. Lett. 89, 223116 (2006).Google Scholar
[7] Jung, Y. Yang, C.-Y., Lee, S.-H. and Agarwal, R. Nano Lett., 9, 2103 (2009).Google Scholar
[8] Caldwell, M. A. Raoux, S. Wang, R. Y. Wong, H.-S. P. and Milliron, D. J. J. Mater. Chem., 20, 1285 (2010).Google Scholar
[9] Lee, B.-S., Burr, G. W. Shelby, R. M. Raoux, S. Rettner, C. T. Bogle, S. N. Darmawikarta, K., Bishop, S. G. and Abelson, J. R. Science, 326. 980 (2009).Google Scholar
[10] Carria, E. Mio, A. D'Arrigo, G., Bongiorno, C. Spinella, C. Bastiani, R. De, Grimaldi, M.G. and Rimini, E. Europ. Phase Change and Ovonic Sci. Symp., Aachen, Germany, 2009 Google Scholar
[11] Bastiani, R. De, Piro, A. M. Grimaldi, M. G. Rimini, E. Baratta, G. A. and Strazzulla, G. Appl. Phys. Lett. 92, 241925 (2008).Google Scholar
[12] Rimini, E. Bastiani, R. De, Carria, E. Grimaldi, M. G. Nicotra, G. Bongiorno, C. and Spinella, C., J. Appl. Phys. 105, 123502 (2009).Google Scholar
[13] Raoux, S. Chen, H.-Y., Caldwell, M. A. and Wong, H.-S. P. Appl. Phys. Lett., 95 071910 (2009).Google Scholar
[14] Raoux, S. Shelby, R. Munoz, B. Hitzbleck, M. Krebs, D. Salinga, M. Woda, M. Austgen, M., Chung, K.-M. and Wuttig, M. Europ. Phase Change and Ovonic Sci. Symp., Prague, Czech Republic, 2008 Google Scholar
[15] Ziegler, J. F. Biersack, J. P. and Littmark, U. The Stopping and the Range of Ions in Solids, Pergamon, New York, 1985.Google Scholar
[16] Salinga, M. PhD thesis, Technical University Aachen, Germany, 2008.Google Scholar