Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T07:31:27.773Z Has data issue: false hasContentIssue false

Ambient Temperature Alkali Metal Transfer in Hydrocarbons - A New Route to Intercalation Compounds and Alloys

Published online by Cambridge University Press:  15 February 2011

J.O. Besenhard
Affiliation:
Inorganic Chemistry Institute, Technical University of Munich, Lichtenbergstr. 4, D-8046 Garching, West Germany
I. Kain
Affiliation:
Inorganic Chemistry Institute, Technical University of Munich, Lichtenbergstr. 4, D-8046 Garching, West Germany
H.-F. Klein
Affiliation:
Inorganic Chemistry Institute, Technical University of Munich, Lichtenbergstr. 4, D-8046 Garching, West Germany
H. MöHwald
Affiliation:
Inorganic Chemistry Institute, Technical University of Munich, Lichtenbergstr. 4, D-8046 Garching, West Germany
H. Witty
Affiliation:
Inorganic Chemistry Institute, Technical University of Munich, Lichtenbergstr. 4, D-8046 Garching, West Germany
Get access

Abstract

Dissolved cobalt(0) complexes of the type [L3L'Co] (L = phosphanes, e.g. PMe3, L' = olefins, e.g. C2H4) are reversibly reduced by alkali metals A (A = Li, K, Rb, Cs)

n[L3L'Co] + A ⇋ A[L3L'Co]

and hence can be used as A-carriers. These carrier complexes A[L3L'Co]n are even soluble in apolar solvents like pentane.

Action of [L3L'Co] plus A in pentane solution on graphite yields binary intercalation compounds ACn. By contrast, conventional ambient temperature A-transfer reagents (e.g. solutions of A in naphthalene-ether or in NH3) require strongly polar solvents and yield ternary intercalation compounds A(solv)yCn.

The “reducing power” of the alkali cobaltates is close to that of free A: alkali-rich phases like 1st stage KC8 or LiC6 or highly doped polyacetylenes (e.g. K(CH)5) are readily prepared. If intercalation of solvated species is unlikely, the A-transfer reactions may also be performed in polar solvents like ethers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rüdorff, W., Chimla 19, 489 (1965).Google Scholar
2. Ginderow, D. and Setton, R., Carbon 6, 81 (1968).Google Scholar
3. Rashkov, I.B., Panayotov, I.M. and Shishkova, V.C., Carbon 17, 103 (1979).Google Scholar
4. Dye, J.L., DeBacker, M.G. and Nicely, V.A., J. Amer. Chem. Soc. 92, 5226 (1970).CrossRefGoogle Scholar
5. Kaempf, B., Raynal, S., Collet, A., Schué, F., Boileau, S. and Lehn, J.M., Angew. Chem. Int. Ed. Engl. 86, 611 (1974).Google Scholar
6. Nominé, M. and Bonnetain, L., Acad, C. R.. Sci. Paris 264C, 2084 (1967).Google Scholar
7. Beguin, F., Setton, R., Hamwi, A. and Touzain, P., Mat. Sci. Eng. 40, 167 (1979).Google Scholar
8. Hérold, A., Bull. Soc. chim. France 999 (1955).Google Scholar
9. Pfluger, P., Geiser, V., Stolz, S. and Güntherodt, H.-J., Synth. Met. 3, 27 (1981).CrossRefGoogle Scholar
10. Whittingham, M.S. and Dines, M.B., J. Electrochem. Soc. 124, 1387 (1977).CrossRefGoogle Scholar
11. Klein, H.-F., Hammer, R., Wenninger, J. and Gross, J. in: Catalysis in Chemistry and Biochemistry, Pullman, B. ed. (D. Reidel, Amsterdam 1979) p. 285.Google Scholar
12. Klein, H.-F., Gross, J. and Besenhard, J.O., Angew. Chem. Int. Ed. Engl. 92, 491 (1980).Google Scholar
13. Besenhard, J.O., Klein, H.-F., Gross, J., Möhwald, H. and Nickl, J.J., Synth. Met. 4, 51 (1981).CrossRefGoogle Scholar
14. Klein, H.-F. and Karsch, H.H., Chem. Ber. 108, 944 (1975).Google Scholar
15. Klein, H.-F., Schubert, U. and Witty, H., in preparation.Google Scholar
16. Klein, H.-F., Gross, J., Basset, J.-M. and Schubert, U., Z. Naturforsc. 35b, 614 (1980).Google Scholar
17. Aronson, S., Salzano, F.J. and Bellafiore, D., J. Chem. Phys. 49, 434 (1968).Google Scholar
18. James, S.D., J. Electrochem. Soc. 122, 921 (1975).Google Scholar
19. Lagrange, P., Guérard, D. and Hbrold, A., Ann. Chim. Fr. 3, 143 (1978).Google Scholar
20. Rashkov, I., Merle, G., Mai, C., Gole, J. and Panayotov, I., Acad, C. R.. Sci. Paris 283C, 339 (1976).Google Scholar
21. Bonnetain, L., Touzain, P. and Hamwi, A., Mat. Sci. Eng. 31, 45 (1977).Google Scholar
22. Beguin, F., Setton, R., Faccini, L., Legrand, A.P., Merle, G. and Mai, C., Synth. Met. 2, 161 (1980).Google Scholar
23. Hérincks, C., Perret, R. and Ruland, W., Carbon 10, 711 (1972).Google Scholar
24. Fialkov, A.S., Zhuikova, T.N., Kazmina, T.K., Savost'yanova, N.A. and Novikov, Y.N., Inorg. Mat. Engl. Transl. 14, 1432 (1978).Google Scholar
25. Sano, M., Sato, N., Inokuchi, H. and Tamura, S., Bull. Chem. Soc. Jpn. 54, 2610 (1981).Google Scholar
26. Nigrey, P.J., Maclnnes, D. Jr., Nairns, D.P., MacDiarmid, A.G. and Heeger, A.J., J. Electrochem. Soc. 128, 1651 (1981).Google Scholar
27. Chung, T.C., Feldblun, A., Heeger, A.J. and MacDiarmid, A.G., J. Chem. Phys. 74, 5504 (1981).Google Scholar
28. Francois, B., Synth. Met. 4, 131 (1981).Google Scholar
29. Koch, V.R., J. Electrochem. Soc. 126, 181 (1979).Google Scholar
30. Dey, A.N. and Sullivan, B.P., J. Electrochem. Soc. 117, 222 (1970).Google Scholar
31. Ito, T., Shirakawa, H. and Ikeda, S., J. Polym. Sci. Polym. Chem. Ed. 12, 11 (1974).Google Scholar
32. Barin, I., Knacke, O. and Kubaschewski, O., Thermochemical Properties of Inorganic Substances, Supplement (Springer-Verlag, Berlin 1977).Google Scholar
33. Besenhard, J.O. and Fritz, H.P., Electrochim. Acta 20, 513 (1975).Google Scholar
34. Dey, A.N., J. Electrochem. Soc. 118, 1547 (1971).Google Scholar