Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T07:51:02.706Z Has data issue: false hasContentIssue false

Alx Ga1-x as Growth by OMVPE Using Trimethylamine Alane

Published online by Cambridge University Press:  25 February 2011

W. S. Hobson
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
C. R. Abernathy
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
T. D. Harris
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

We have investigated the growth of Alx Gal-xAs (0.1 ≤ x ≤ 1) by organometallic vapor phase epitaxy using trimethylamine alane (TMAA1) as the aluminum precursor. A low pressure (30 Torr) reactor was used with hydrogen as the carrier gas. At the high gas velocities (> 1 m · s-1) employed there was no visible deposition upstream of the substrate. AIGaAs epilayers with featureless surface morphology could be obtained over the entire range of composition. The layers exhibited very strong room-temperature photoluminescence and excellent compositional uniformity (x = 0.235 ± 0.002 over a 40 mm diameter). A comparison was made between the electrical and optical characteristics of AlGaAs grown with either trimethylgallium (TMGa) or triethylgallium (TEGa). The hole concentration of the layers grown using TMGa was significantly higher than that with TEGa (e.g., 6–7 × 1017 cm-3 vs. 1 × 1016 cm-3) for the same TMAA1 and AsH3 mole fractions. High-purity AlGaAs was achieved with TMAAl and TEGa at higher AsH3 flow rates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kuech, T. F., Wolford, D. J., Veuhoff, E., Deline, V., Mooney, P. M., Potemski, R., and Bradley, J., J. Appl. Phys. 62, 632 (1987).Google Scholar
2. Kobayashi, N. and Makimoto, T., Jap. J. Appl. Phys. 24, L824 (1985).Google Scholar
3. Frese, V., Regel, G. K., Hardtdegen, H., Brauers, A., Balk, P., Hostalek, M., Lokai, M., Pohl, L., Miklis, A., and Werner, K., J. Electron. Mater. 19, 305 (1990).Google Scholar
4. American Cyanamid Company, Wayne, New Jersey.Google Scholar
5. Abernathy, C. R., Jordan, A. S., Pearton, S. J., Hobson, W. S., Bohling, D. A., and Muhr, G. T., Appl. Phys. Lett. 56, 2654 (1990).Google Scholar
6. Roberts, J. S., Button, C. C., David, J. P. R., Jones, A. C., and Rushworth, S. A., J. Cryst. Growth 104, 857 (1990).Google Scholar
7. Hobson, W. S., Levi, A. F. J., O'Gorman, J., Pearton, S. J., Abernathy, C. R., and Swaminathan, V., Electronics Letters, 26, 1762 (1990).Google Scholar
8. Ruff, J. K., Inorg. Synth. 9, 30 (1967).Google Scholar
9. Matsumoto, K., Itoh, K., Tabuchi, T., and Tsumoda, R., J. Cryst. Growth 77, 151 (1986).Google Scholar
10. Evans East, Inc., Plainsboro, New Jersey.Google Scholar
11. Harris, T. D., J. Cryst. Growth 89, 21 (1988); T. D. Harris and M. L. Schnoes, Proceeding, SPIE, Vol. 1055, 11 (1989).Google Scholar
12. Abernathy, C. R., Pearton, S. J., Manasreh, M. O., Fischer, D. W., and Talwar, D. N., Appl. Phys. Lett. 57, 294 (1990); C. R. Abernathy, Paper presented at MOVPE V, Aachan, Germany, June, 1990, to be published in J. Cryst. Growth.Google Scholar