Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T08:17:02.165Z Has data issue: false hasContentIssue false

Aluminum-Titanium Multilayer Interconnect With Titanium Diffusion Barrier

Published online by Cambridge University Press:  26 February 2011

S. Tong-Lee
Affiliation:
Corporate Research Laboratories, Eastman Kodak Company, Rochester, NY 14650
Tzuen-Luh Huang
Affiliation:
Electronics Research Laboratories, Photographic Products Group, Eastman Kodak Company, Rochester, NY 14650
L. Van Den Hove
Affiliation:
IMEC Laboratory, Kateldrees 75, Leuven, Belgium
D. N. Nichols
Affiliation:
Electronics Research Laboratories, Photographic Products Group, Eastman Kodak Company, Rochester, NY 14650
Get access

Abstract

The metallurgical reaction at 450°C in forming gas ambient between the Ti diffusion barrier and Al, causing the contact degradation in the Al (1% Si)-Ti multilayer interconnects has been studied. The Ti-Al reaction is reduced by preheating the Ti layer in N2 using rapid thermal processing (RTP) at 2.500°C. The curtailed reaction is attributed to the thin surface titanium oxynitride layer. It was found that a 1000-Å Ti layer inserted between the multilayer and Si is effective as a sacrificial diffusion barrier against contact degradation, but 500-Å Ti is not. RTP of the thin Ti film rendered it effective as a diffusion barrier.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Donald S., Gardner, Robert B., Beyers, Timothy L., Michalka, Krishna C., Saraswat, Troy W., Barbee Jr, and James D., Meindl, IDEM, 1984, p. 114.Google Scholar
2. Bing, Whey Snen, Tom, Bonifield, and Joe, McPherson, IEEE V-MIC Conf., 1985, p. 114.Google Scholar
3. Luc, Van den Hove, Tzuen-Luh, Huang, and Nichols, D.N., unpublished.Google Scholar
4. Finetti, M., Ostoja, P., Solmi, S., and Socini, G., Solid State Electronics, 23, 255 (1980).Google Scholar
5. Tatsuzawa, T., Madakoro, S., and Hajiwara, S., IEEE Reliability Physics Symposium, 1985, p. 138.Google Scholar
6. O'Donnell, S.J., Bartling, J.W., and Jill, G., IEEE Reliability Physics Symposium., 1985, p. 9.Google Scholar
7. Bower, R.W., Appl. Phys. Lett. 21, 99 (1973).CrossRefGoogle Scholar
8. Ting, C.Y. and Crowder, B.L., J. Electrochem. Soc. 129, 2590 (1982).CrossRefGoogle Scholar
9. Krafcsik, I., Gyulai, J., Palmstrom, C.J., and Mayer, J.W., Appl. Phys. Lett. 43, 1015 (1983).CrossRefGoogle Scholar
10. Wittmer, M., Le Goues, F., and Huang, H.-C., J. Electrochem. Soc. 132, 1450 (1985).CrossRefGoogle Scholar
11. van Dijk, J.F.M. and Wolter, R.A.M., Proceedings of Second International IEEE VLSI Multilevel Interconnection Conference, 1982, p. 123.Google Scholar
12. Ting, C.Y. and Wittmer, M., J. Appl. Phys. 54, 937 (1982).CrossRefGoogle Scholar
13. Tu, K.N. and Mayer, J.W., “Suicide Formation,” in Thin Films-Interdiffusion and Reaction, edited by Poate, J.M., Tu, K.N., and Mayer, J.W. (The Electrochemical Soc, Princeton, 1978), p. 359.Google Scholar
14. Sinke, W., Frijlink, G.P.A., and Saris, F.W., Appl. Phys. Lett. 47, 471 (1985).Google Scholar
15. Chen, D.C., Merchant, P., and Jun, Amano, J. Vac. Sci. Technol. A3, 709 (1985).CrossRefGoogle Scholar
16. Nakamura, K., Lau, S.S., Nicolet, M-A., and Mayer, J.W., Appl. Phys. Lett. 28, 277 (1976).Google Scholar
17. Huang, T.L. and Lee, S.-T., this proceeding.Google Scholar