Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T01:48:21.506Z Has data issue: false hasContentIssue false

Aluminum Oxide Passivation Layer for Crystalline Silicon Solar Cells Deposited by Mist CVD in Open-Air Atmosphere

Published online by Cambridge University Press:  01 April 2014

Toshiyuki Kawaharamura
Affiliation:
Institute for Nanotechnology, Kochi University of Technology, Kami 782-8502, Japan
Takayuki Uchida
Affiliation:
Department of Electronic Science and Engineering, Kyoto University, Kyoto 615-8510, Japan
Kenji Shibayama
Affiliation:
Department of Electronic Science and Engineering, Kyoto University, Kyoto 615-8510, Japan
Shizuo Fujita
Affiliation:
Photonics and Electronics Science and Engineering Center, Kyoto University, Kyoto 615-8520, Japan
Takahiro Hiramatsu
Affiliation:
Future Technology Center, Toshiba Mitsubishi-Electric Industrial Systems Corporation (TMEIC), Kobe 650-0047, Japan
Hiroyuki Orita
Affiliation:
Future Technology Center, Toshiba Mitsubishi-Electric Industrial Systems Corporation (TMEIC), Kobe 650-0047, Japan
Get access

Abstract

The surface passivation of Si wafer by AlOx thin films grown by mist CVD in an open-air atmosphere was studied with a view to improving the effect of high-performance c-Si solar cells. In AlOx thin film grown at a temperature above 400°C by mist CVD, the OH bonding did not remain in the film and the breakdown field (EBD) was over 6 MV/cm. In Si wafers passivated by AlOx thin films grown by mist CVD at growth temperature above 400°C, the negative fixed charge density (Qf) at the interface was higher than 1012 cm-2 and the surface recombination velocity (Seff) was 44.4 cm/s. These results show that mist CVD, which is fundamentally an environmentally friendly technique, may be suitable for the fabrication of a passivation film on Si surfaces designed to improve the effect of high-performance c-Si solar cells.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aberle, A.G., Prog. Photovolt, Res. Appl. 8, 473 (2000).10.1002/1099-159X(200009/10)8:5<473::AID-PIP337>3.0.CO;2-D3.0.CO;2-D>CrossRef3.0.CO;2-D>Google Scholar
Miyajima, S., Irikawa, J., Yamada, A., and Konagai, M., J. Appl. Phys. 109, 054507 (2011).10.1063/1.3552888CrossRefGoogle Scholar
Miyajima, S., J. Plasma Fusion Res. 85, 820 (2009) [in Japanese].Google Scholar
Agostinelli, G., Delabie, A., Vitanov, P., Alexieva, Z., Dekkers, H. F. W., De Wolf, S., and Beaucarne, G., Sol. Energy Mater. Sol. Cells 90, 3438 (2006).10.1016/j.solmat.2006.04.014CrossRefGoogle Scholar
Voigt, M. and Sokolowski, M., Mater. Sci. Eng. B 109, 99 (2004).10.1016/j.mseb.2003.10.056CrossRefGoogle Scholar
Andersson, J. M., Wallin, E., Helmersson, U., Kreissig, U., and Munger, E P., Thin Solid Films 513, 57 (2006).10.1016/j.tsf.2006.01.016CrossRefGoogle Scholar
Smit, M K., Acket, G.A., and Laan, C.J.V.D., Thin Solid Films 138, 171 (1986).10.1016/0040-6090(86)90391-3CrossRefGoogle Scholar
Nowicki, R.S., J. Vac. Sci. Technol. 14, 127 (1997).10.1116/1.569103CrossRefGoogle Scholar
Este, G., Westwood, W.D., J. Vac. Sci. Technol. A 2, 1238 (1984).10.1116/1.572502CrossRefGoogle Scholar
Li, T.-T. and Cuevas, A., Phys. Stat. Sol. RRL 3, 160 (2009).10.1002/pssr.200903140CrossRefGoogle Scholar
Frigo, D.M., van Eijden, G.J. M., Reuvers, P.J., and Smit, C.J., Chem. Mater. 6, 190 (1994).10.1021/cm00038a015CrossRefGoogle Scholar
Chryssou, C.E. and Pitt, C.W., Appl. Phys. A 65, 469 (1997).10.1007/s003390050611CrossRefGoogle Scholar
Miyajima, S., Irikawa, J., Yamada, A., and Konagai, M., Appl. Phys. Express 3, 012301 (2010).10.1143/APEX.3.012301CrossRefGoogle Scholar
Wu, S.Y., Hong, M., Kortan, A.R., Kwo, J., Mannaerts, J.P., Lee, W.C., and Huang, Y.L., Appl. Phys. Lett. 87, 091908 (2005).10.1063/1.2037205CrossRefGoogle Scholar
Kim, J., Song, J., Kwon, O., Kim, S., Hwang, C.S., Park, S.-H., Yun, S.J., Jeong, J., and Hyun, K.S., Appl. Phys. Lett. 80, 2734 (2002).10.1063/1.1468916CrossRefGoogle Scholar
Suntola, T., “Atomic Layer Epitaxy” in Handbook of Crystal Growth 3, Thin Films and Epitaxy Part B, Growth Mechanism and Dynamics, Chapter 14, Elsevier, (1994) p.601.Google Scholar
Huang, M.L., Chang, Y.C., Chang, C.H., Lee, Y.J., Chang, P., Kwo, J., Wu, T.B., and Hong, M., Appl. Phys. Lett. 87, 252104 (2005).10.1063/1.2146060CrossRefGoogle Scholar
Yun, S.J., Kang, J.S., Paek, M.C., and Nam, K.-S., J. Kor. Phys. Soc. 33, S170 (1998).Google Scholar
Groner, M.D., Fabreguette, F.H., Elam, J.W., and, George, S.M., Chem. Mater. 16, 639 (2004).10.1021/cm0304546CrossRefGoogle Scholar
Hoex, B., Heil, S.B.S., Langereis, E., van de Sanden, M.C.M., and Kessels, W.M.M., Appl. Phys. Lett. 89, 042112 (2006).10.1063/1.2240736CrossRefGoogle Scholar
Hoex, B., Schmidt, J., Bock, R., Altermatt, P.P., van de Sanden, M.C.M., and Kessels, W.M.M., Appl. Phys. Lett. 91, 112107 (2007).10.1063/1.2784168CrossRefGoogle Scholar
Schmidt, J., Merkle, A., Brendel, R., Hoex, B., van de Sanden, M.C.M., and Kessels, W.M.M., Prog. Photovolt: Res. Appl. 16, 461 (2008).10.1002/pip.823CrossRefGoogle Scholar
Hoex, B., Schmidt, J., Pohl, P., van de Sanden, M.C.M., and Kessels, W.M.M., J. Appl. Phys. 104, 044903 (2008).10.1063/1.2963707CrossRefGoogle Scholar
Rogojan, R., Andronescu, E., Ghitulica, C., and Vasile, B.S., U.P.B. Sci. Bull., Series B 73, 67 (2011).Google Scholar
Avis, C. and Jang, J., J. Mater. Chem. 21, 10649 (2011).10.1039/c1jm12227dCrossRefGoogle Scholar
Shamala, K.S., Murthy, L.C.S., Radhakrishna, M.C., and Rao, K.N., Sens. Actuators A 135, 552 (2007).10.1016/j.sna.2006.10.004CrossRefGoogle Scholar
Mendoza, J.G-., Hipolito, M.G-., Frutis, M.A-., and Falcony, C., J. Mater. Sci.: Mater. Electr. 15, 629 (2004).Google Scholar
Kawaharamura, T., Ph. D. Thesis, Faculty of Eng., Kyoto Univ., Kyoto (2008) [in Japanese].Google Scholar
Kawaharamura, T., Nishinaka, H., and Fujita, S., Jpn. J. Appl. Phys. 47, 4669 (2008).10.1143/JJAP.47.4669CrossRefGoogle Scholar
Kamada, Y., Kawaharamura, T., Nishinaka, H., and Fujita, S., Jpn. J. Appl. Phys. 45, L857 (2006).10.1143/JJAP.45.L857CrossRefGoogle Scholar
Lu, J.G., Kawaharamura, T., Nishinaka, H., Kamada, Y., Ohshima, T., and Fujita, S., J. Crystal Growth 29, 1 (2007).10.1016/j.jcrysgro.2006.10.251CrossRefGoogle Scholar
Kawaharamura, T., Dang, G.T., and Furuta, M., Jpn. J. Appl. Phys. 51, 040207 (2012).Google Scholar
Kawaharamura, T., Mori, K., Orita, H., Shirahata, T., Fujita, S., and Hirao, T., Jpn. J. Appl. Phys. 52, 035501 (2013).10.7567/JJAP.52.035501CrossRefGoogle Scholar
Piao, J., Katori, S., Kawaharamura, T., Li, C., and Fujita, S., Jpn. J. Appl. Phys. 54, 090201 (2012).10.7567/JJAP.51.090201CrossRefGoogle Scholar
Furuta, M., Kawaharamura, T., Wang, D., Hirao, T., Toda, T., and Dang, G. T., IEEE Electron Devices Letters 33, 851 (2012).10.1109/LED.2012.2192902CrossRefGoogle Scholar
Kawaharamura, T., Uchida, T., Wang, D., Sanada, M., and Furuta, M., Phys. Stat. Sol.(c), 10 1565 (2013).Google Scholar
Kawaharamura, T., Uchida, T., Sanada, M., and Furuta, M., AIP Advances 3, 032135 (2013).Google Scholar
Priya, G.K., Padmaja, P., Warrier, K.G.K., Damodaran, A.D., and Aruldhas, G., J. Mater. Sci. Lett. 16, 1584 (1997).10.1023/A:1018568418302CrossRefGoogle Scholar
Sproul, A.B., J. Appl. Phys. 76, 2851 (1994).10.1063/1.357521CrossRefGoogle Scholar
Hezel, R. and Jaeger, K., J. Electrochem. Soc. 136, 518 (1989).10.1149/1.2096673CrossRefGoogle Scholar
Saint-Cast, P., Kania, D., Hofmann, M., Benick, J., Rentsch, J., and Preu, R., Appl. Phys. Lett. 95, 151502 (2009).10.1063/1.3250157CrossRefGoogle Scholar