Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T15:35:12.097Z Has data issue: false hasContentIssue false

Aluminum Nitride Crystal Growth by Halide Vapor Transport Epitaxy

Published online by Cambridge University Press:  11 February 2011

V. L. Tassev
Affiliation:
Solid State Scientific Corporation, Hollis, NH 03049
D. F. Bliss
Affiliation:
Air Force Research Laboratory, Sensors Directorate, 80 Scott Road, Hanscom AFB MA 01731 Tel: (781) 377–4247; Fax: (781) 377–3717; E-mail: [email protected]
D. Weyburne
Affiliation:
Air Force Research Laboratory, Sensors Directorate, 80 Scott Road, Hanscom AFB MA 01731 Tel: (781) 377–4247; Fax: (781) 377–3717; E-mail: [email protected]
J. S. Bailey
Affiliation:
Solid State Scientific Corporation, Hollis, NH 03049
S.-Q. Wang
Affiliation:
Solid State Scientific Corporation, Hollis, NH 03049
Get access

Abstract

Halide vapor transport epitaxy (HVTE) is demonstrated for growth of AlN layers with thickness up to 50 μm at deposition rates up to 60 μm/h. The HVTE process uses an aluminum chloride amine adduct as the aluminum source of both aluminum and nitrogen. This new technique eliminates the main difficulties of the conventional hydride VPE growth, where aluminum oxidation and the strong reactivity of aluminum chloride with fused silica create the potential for oxygen contamination. This study shows the effect of temperature, gas flow velocities, and reactor pressure on the growth rate and layer quality. It is found that the growth rate and the layer quality strongly depend on the gas ratio. The species of carrier gas, the flow rates and partial pressures can be used as tools to optimize growth rate and to avoid any etching effects resulting from reverse chemical reactions. The crystalline layer quality as determined by x-ray rocking curve measurement shows FWHM of 300–900 and 500–1300 arc-sec for (002) and (102) planes, respectively.

PACS: 81.05.Ea; 81.15.Kk; 68.55.Jk.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Slack, G. A., J. Phys. Chem. Solids 34 (1973) 321.Google Scholar
[2] Yim, W. M., Stofko, E. J., Zanzucchi, P. J., Pankove, J. I., Ettenberg, M. and Gilbert, S. L., J. Appl. Phys. 44/1 (1973) 292.Google Scholar
[3] Stern, E., J. Appl. Phys. MTT–17 (1967) 927.Google Scholar
[4] Liu, L. and Edgar, J., Mat. Sci. and Eng. R37 (2002) 61.Google Scholar
[5] Rojo, J., Schowalter, L., Gaska, R., Shur, M., Khan, M., Yang, J., and Koleske, D., J. Crystal Growth 240 (2002) 508.Google Scholar
[6] Shuskus, A. J., Reeder, T. M. and Paradis, E. L., Appl. Phys. Lett. 24 (1974) 155. Google Scholar
[7] Yoshida, S., Misawa, M., Fujii, Y., Takeda, S., Hayakawa, H., Gonda, S. and Iton, A., J. Vac. Sci. Technol. 16 (1979) 990.Google Scholar
[8] Hasegawa, F., Takahashi, T., Kubo, K. end Nannichi, Y., Jap. J. Appl. Phys. 26 (1987) 1555.Google Scholar
[9] Komiyama, H. and Osawa, O., Jap. J. Appl. Phys 24 (1985) L795.Google Scholar
[10] Nakamura, K., Ostvold, T. and Oye, H., Phys. Chem. 90 (1986) 141.Google Scholar
[11] Chu, T. L. and Kelm, R. W. Jr, J. Electrochem. Soc. 122 (1975) 995.Google Scholar
[12] Goto, T., Tsuneyoshi, J., Kaya, K., and Hirai, T., J. Mat. Sci. 27 (1992) 247.Google Scholar
[13] Ostvold, T., Rytter, E. and Papatheododou, G. N., Polyhedron 5/3 (1986) 821.Google Scholar
[14] Nakamura, K., Ostvold, T. and Oye, H., Yoyuen 27 (1984) 7.Google Scholar
[15] Przhevalskii, I. N., Karpov, S. Yu. and Makarov, Yu. N., MRS Internet J. Nitride Semicond. Res. 3, 30 (1998) 1.Google Scholar
[16] Chen, C., et. al. J. Elect. Mater., 25 (1996) 1004.Google Scholar