Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-09T07:41:24.613Z Has data issue: false hasContentIssue false

Alternative Group V Precursors for the Growth of Al-Based III-V Epitaxial Layers by OMVPE

Published online by Cambridge University Press:  22 February 2011

W. S. Hobson
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
M. Geva
Affiliation:
AT&T Bell Laboratories, Breinigsville, Pennsylvania 18031
Get access

Abstract

Tertiarybutylarsine (TBAs), tris-dimethylaminoarsenic (DMAA), and tertiarybutylphosphine (TBP) were investigated as alternatives to arsine and phosphine for the growth of AlGaAs, AlInAs, and AlInP by organometallic vapor phase epitaxy. The use of TBAs led to a significant reduction in carbon and oxygen incorporation compared to ASH3 for AlGaAs. Increasing the TBAs molar flow rate reduced the oxygen (and carbon) concentration. Lower oxygen concentration was observed in AllnP grown with TBP compared to PH3. Increasing the PH3 molar flow rate decreased the oxygen incorporation in AllnP. The morphology of AllnP improved considerably as the growth temperature was increased from 650°C to 750°C, similar to the case of PH3. AlInAs and AlGaAs layers grown with DMAA exhibited rough morphology, presumably due to oxygen-containing impurities in the DMAA source.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brauers, A., J. Cryst. Growth, 107, 281 (1991).Google Scholar
2. Hamaoka, K., Suemune, I., Fujii, K., Koui, T., Kishimoto, A., and Yamanishi, M., Jpn. J. Appl. Phys. 30, L1579(1991).Google Scholar
3. Koui, T., Suemune, I., Miyakoshi, K., Fujii, K., and Yamanishi, M., Jpn. J. Appl. Phys. 31, L1272 (1992).Google Scholar
4. Abernathy, C. R., Wisk, P. W., Bohling, D. A., and Muhr, G. T., Appl. Phys. Lett. 60, 2421 (1992).Google Scholar
5. Abernathy, C. R., Wisk, P. W., Pearton, S. J., Ren, F., Bohling, D. A., and Muhr, G. T., J. Cryst. Growth (in press).Google Scholar
6. Watkins, S. P. and Haacke, G., Appl. Phys. Lett. 59, 2263 (1991).Google Scholar
7. Hobson, W. S., Mat. Res. Soc. Symp. Proc. Vol. 240, 45 (1992).Google Scholar
8. Hobson, W. S., Pearton, S. J., Kozuch, D. M., and Stavola, M., Appl. Phys. Lett. 60, 3259 (1992).Google Scholar
9. Hobson, W. S., Wu, M. C., Chen, Y. K., Chin, M. A., Geva, M., and Jones, K. S., Appl. Phys. Lett. 60, 598(1992).Google Scholar
10. Kuech, T. F., Potemski, R., Cardone, F., and Scilla, G., J. Electron. Mater. 21, 341 (1992).Google Scholar
11. Hobson, W. S., van der Ziel, J. P., Levi, A. F. J., O'Gorman, J., Abernathy, C. R., Geva, M., Luther, L. C., and Swaminathan, V., J. Appl. Phys. 70, 432 (1991).Google Scholar
12. Hori, H., Kawakyu, Y., Iskikawa, H., and Mashita, M., Jpn. J. Appl. Phys. 30, L1343 (1991).Google Scholar