Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-20T09:15:21.485Z Has data issue: false hasContentIssue false

AlN Periodic Multiple-layer Structures Grown by MOVPE for High Quality Buffer Layer

Published online by Cambridge University Press:  31 January 2011

Vladimir Kuryatkov
Affiliation:
[email protected], Texas Tech University, Lubbock, Texas, United States
Wen Feng
Affiliation:
[email protected], United States
Mahesh Pandikunta
Affiliation:
[email protected], United States
Dana Rosenbladt
Affiliation:
[email protected], Texas Tech University, Lubbock, Texas, United States
Boris Borisov
Affiliation:
[email protected], United States
Sergey A Nikishin
Affiliation:
[email protected], United States
Mark Holtz
Affiliation:
[email protected], Texas Tech University, Lubbock, Texas, United States
Get access

Abstract

High crystal quality crack-free AlN on sapphire was grown by low pressure metal organic vapor phase epitaxy (MOVPE). Growth experiments combine two recent approaches: the ammonia pulse-flow method and ammonia continuous-flow growth mode by varying the V/III ratio. The detailed aspects of MOVPE, employing the periodic multilayer approach at low, intermediate, and high temperatures are described. This method yields significant reduction of screw dislocation density and provides very smooth surface for thin AlN layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Amano, H., Sawaki, N., Akasaki, I. and Toyoda, Y., Appl. Phys. Lett. 48, 353 (1986).Google Scholar
2 Khan, M. A., Skogman, R. A., Hove, J. M. van, Olson, D. T., and Kuznia, J. N., Appl. Phys. Lett. 60, 1366 (1992).Google Scholar
3 Imura, M., Nakano, K., Fujimoto, N., Okada, N., Balakrishnan, K., Iwaya, M., Kamiyama, S., Amano, H., Akasaki, I., Noro, T., Takagi, T., and Bandoh, A., Jpn. J. Appl. Phys. 45, 8639 (2006).Google Scholar
4 Okada, N., Kato, N., Sato, S., Sumii, T., Nagai, T., Fujimoto, N., Imura, M., Balakrishnan, K., Iwaya, M., Kamiyama, S., Amano, H., Akasaki, I., Maruyama, H., Takagi, T., Noro, T., and Bandoh, A., J. Cryst. Growth, 298, 349 (2007).Google Scholar
5 Hirayama, H., Yatabe, T., Noguchi, N., Ohashi, T., and Kamata, N., App. Phys. Lett., 91, 071901 (2007).Google Scholar
6 Koleske, D. D., Coltrin, M. E., Cross, K. C., Mitchell, C. C., and Allerman, A. A., J. Cryst. Growth, 273, 86 (2004).Google Scholar
7 Ayers, J. E., J. Cryst. Growth, 135, 71 (1994).Google Scholar
8 Pandikunta, M., Thesis, M.S., Texas Tech University, 2009.Google Scholar
9 Wright, F., J. Appl. Phys. 82, 2883 (1997).Google Scholar