Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T07:25:14.806Z Has data issue: false hasContentIssue false

All-Carbon Composite for Photovoltaics

Published online by Cambridge University Press:  06 September 2011

Alvin T.L. Tan
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, USA
Vincent C. Tung
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, USA
Jaemyung Kim
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, USA
Jen-Hsien Huang
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, USA
Ian Tevis
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, USA
Chih-Wei Chu
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, USA
Samuel I. Stupp
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, USA
Jiaxing Huang
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, USA
Get access

Abstract

Graphitic nanomaterials such as graphene, carbon nanotubes (CNT), and C60 fullerenes are promising materials for energy applications because of their extraordinary electrical and optical properties. However, graphitic materials are not readily dispersible in water. Strategies to fabricate all-carbon nanocomposites typically involve covalent linking or surface functionalization, which breaks the conjugated electronic networks or contaminates functional carbon surfaces. Here, we demonstrate a facile surfactant-free strategy to create such all-carbon composites. Fullerenes, unfunctionalized single walled carbon nanotubes, and graphene oxide sheets can be conveniently co-assembled in water, resulting in a stable colloidal dispersion amenable to thin film processing. The thin film composite can be made conductive by mild thermal heating. Photovoltaic devices fabricated using the all-carbon composite as the active layer demonstrated an on-off ratio of nearly 106, an open circuit voltage of 0.59V, and a power conversion efficiency of 0.21%. This photoconductive and photovoltaic response is unprecedented among all-carbon based materials. Therefore, this surfactant-free, aqueous based approach to making all-carbon composites is promising for applications in optoelectronic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Yamamoto, Y. Fukushima, T. Suna, Y. Ishii, N. Saeki, A. Seki, S. Tagawa, S. Taniguchi, M. Kawai, T.; Aida, T. Science 2006, 314, 17611764.Google Scholar
(2) Nasibulin, A. G. Pikhitsa, P. V. Jiang, H. Brown, D. P. Krasheninnikov, A. V. Anisimov, A. S. Queipo, P. Moisala, A. Gonzalez, D. Lientschnig, G. Hassanien, A. Shandakov, S. D. Lolli, G. Resasco, D. E. Choi, M. Tomanek, D.; Kauppinen, E. I. Nat Nano 2007, 2, 156161.Google Scholar
(3) Umeyama, T. Tezuka, N. Fujita, M. Hayashi, S. Kadota, N. Matano, Y.; Imahori, H. Chem. Eur. J. 2008, 14, 48754885.Google Scholar
(4) Kalita, G. Adhikari, S. Aryal, H. R. Umeno, M. Afre, R. Soga, T.; Sharon, M. Appl. Phys. Lett. 2008, 92, 063508.Google Scholar
(5) Yamamoto, Y. Zhang, G. Jin, W. Fukushima, T. Ishii, N. Saeki, A. Seki, S. Tagawa, S. Minari, T. Tsukagoshi, K.; Aida, T. Proceedings of the National Academy of Sciences 2009, 106, 2105121056.Google Scholar
(6) Umeyama, T. Tezuka, N. Seki, S. Matano, Y. Nishi, M. Hirao, K. Lehtivuori, H. Tkachenko, N. V. Lemmetyinen, H. Nakao, Y. Sakaki, S.; Imahori, H. Adv. Mater. 2010, 22, 17671770.Google Scholar
(7) Zhang, X. Huang, Y. Wang, Y. Ma, Y. Liu, Z.; Chen, Y. Carbon 2009, 47, 334337.Google Scholar
(8) Zhu, H. Wei, J. Wang, K.; Wu, D. Solar Energy Materials and Solar Cells 2009, 93, 14611470.Google Scholar
(9) Sariciftci, N. S. Smilowitz, L. Heeger, A. J.; Wudl, F. Science 1992, 258, 14741476.Google Scholar
(10) Tans, S. J. Verschueren, A. R. M.; Dekker, C. Nature 1998, 393, 4952.Google Scholar
(11) Dürkop, T. Getty, S. A. Cobas, E.; Fuhrer, M. S. Nano Letters 2004, 4, 3539.Google Scholar
(12) Gilje, S. Han, S. Wang, M. Wang, K. L.; Kaner, R. B. Nano Letters 2007, 7, 33943398.Google Scholar
(13) Eda, G. Fanchini, G.; Chhowalla, M. Nat Nano 2008, 3, 270274.Google Scholar
(14) Arnold, M. S. Zimmerman, J. D. Renshaw, C. K. Xu, X. Lunt, R. R. Austin, C. M.; Forrest, S. R. Nano Letters 2009, 9, 33543358.Google Scholar
(15) Kim, F. Cote, L. J.; Huang, , J. Advanced Materials 2010, 22, 19541958.Google Scholar
(16) Kim, J. Cote, L. J. Kim, F. Yuan, W. Shull, K. R.; Huang, , J. Journal of the American Chemical Society 2010, 132, 81808186.Google Scholar
(17) Cote, L. J. Kim, J. Tung, V. C. Luo, J. Kim, F.; Huang, , J. Pure Appl. Chem. 2011, 83, 95110.Google Scholar
(18) Schniepp, H. C. Li, J.-L. McAllister, M. J. Sai, H. Herrera-Alonso, M. Adamson, D. H. Prud’homme, R. K. Car, R. Saville, D. A. Aksay, I. A. The Journal of Physical Chemistry B 2006, 110, 85358539.Google Scholar
(19) Stankovich, S. Dikin, D. Dommett, A., Kohlhaas, G. H. B., Zimney, K. M., Stach, E. J., Piner, E. A., Nguyen, R. D., Ruoff, S. T., R. S. Nature 2006, 442, 282286.Google Scholar
(20) Cote, L. Cruz-Silva, J., Huang, R., J. Journal of the American Chemical Society 2009, 131, 1102711032.Google Scholar
(21) Hummers, W. S.; Offeman, R. E. Journal of the American Chemical Society 1958, 80, 1339.Google Scholar
(22) Cote, L. J. Kim, F.; Huang, J. Journal of the American Chemical Society 2009, 131, 10431049.Google Scholar
(23) Kim, F. Luo, J. Cruz-Silva, R. Cote, L. Sohn, J., Huang, K., J. Adv. Funct. Mater. 2010, 20, n/a-n/a.Google Scholar
(24) Erickson, K. Erni, R. Lee, Z. Alem, N. Gannett, W.; Zettl, A. Adv. Mater. 2010, n/a-n/a.Google Scholar
(25) Hare, J. Kroto, P., Taylor, H. W., R. Chemical Physics Letters 1991, 177, 394-398.Google Scholar
(26) Ausman, K. D. Piner, R. Lourie, O. Ruoff, R. S. Korobov, M. The Journal of Physical Chemistry B 2000, 104, 89118915.Google Scholar
(27) Li, D., Muller, M. B., Gilje, S., Kaner, R. B., Wallace, G. G., Nat Nano 2008, 3, 101105.Google Scholar
(28) Dresselhaus, M. S. Jorio, A. Hofmann, M. Dresselhaus, G.; Saito, R. Nano Letters 2010, 10, 751758.Google Scholar
(29) Sato, N. Saito, Y.; Shinohara, H. Chemical Physics 1992, 162, 433438.Google Scholar
(30) Shirley, E. L.; Louie, S. G. Phys. Rev. Lett. 1993, 71, 133.Google Scholar