Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T02:08:55.412Z Has data issue: false hasContentIssue false

Air Bridge and Vertical Carbon Nanotube Switches for High Performance Switching Applications

Published online by Cambridge University Press:  01 February 2011

Anupama B Kaul
Affiliation:
[email protected], Jet Propulsion Laboratory, Microwave Systems Section, 4800 Oak Grove Drive, Pasadena, CA, 91109, United States, 818-393-7186
Eric W Wong
Affiliation:
[email protected], Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA, 91109, United States
Larry Epp
Affiliation:
[email protected], Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA, 91109, United States
Michael J. Bronikowski
Affiliation:
michael. [email protected], Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA, 91109, United States
Brian D Hunt
Affiliation:
[email protected], Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA, 91109, United States
Get access

Abstract

Carbon nanotubes are attractive for switching applications since electrostatically-actuated CNT switches have low actuation voltages and power requirements, while allowing GHz switching speeds that stem from the inherently high elastic modulus and low mass of the CNT. Our first NEM structure, the air-bridge switch, consists of suspended single-walled nanotubes (SWNTs) that lie above a sputtered Nb electrode. Electrical measurements of these air-bridge devices show well-defined ON and OFF states as a dc bias of a few volts is applied. The switches were measured to have switching times down to a few nanoseconds. Our second NEM structure, the vertical CNT switch, consists of nanotubes grown perpendicular to the substrate. Vertical multi-walled nanotubes (MWNTs) are grown directly on a heavily doped Si substrate, from 200 − 300 nm wide, ∼ 1 μm deep nano-pockets, with Nb metal electrodes to result in the formation of a vertical single-pole-double-throw CNT switch architecture.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kim, P. and Lieber, C. M., Science 286, 2148 (1999).Google Scholar
2 Rueckes, T., Kim, K., Joselevich, E., Tseng, G. Y., Cheung, C. L., and Lieber, C. M., Science 289, 94 (2000).Google Scholar
3 Collins, P. G., Bradley, K. B., Ishigamo, M., and Zettl, A., Science 287, 120 (2000).Google Scholar
4 Sazonova, V., Yaish, Y., Ustunel, H., Roundy, D., Arias, T. A., and McEuen, P. L., Nature 431, 284 (2004).Google Scholar
5 Dequesnes, M., Rotkin, S. V. and Aluru, N. R., Nanotech. 13, 120 (2002).Google Scholar
6 Segal, B. M., Block, D. K., Thomas, R., Electromechanical memory array using nanotubes ribbons and method for making same, US Patent 6,919,592, 2004.Google Scholar
7 Kinaret, J. M., Nord, T., and Viefers, S., Appl. Phys. Lett., 82, 1287 (2003).Google Scholar
8 Lee, S. W., Lee, D. S., Morjan, R. E., Jhang, S. H., Sveningsson, M., Nerushev, O. A., Park, Y. W., and Campbell, E. E. B., Nano. Lett. 4, 2027 (2004).Google Scholar
9 Cha, S. N., Jang, J. E., Choi, Y., and Amaratunga, G. A. J., Kang, D. J., Hasko, D. J., Jung, J. E. and Kim, J. M., Appl. Phys. Lett. 86, 083105–1 (2005).Google Scholar
10 Dujardin, E., Derycke, V., Goffman, M. F., Lefevre, R., and Bourgoin, J. P., Appl. Phys. Lett. 87, 193107–1 (2005).Google Scholar
11 Kaul, A. B., Wong, E. W., Epp, L., and Hunt, B. D., accepted, to appear in Nano Letters, April 2006.Google Scholar
12 Peroulis, D., Pacheco, S. P., Sarabandi, K., Katehi, L. P. B., IEEE Trans. on Microwave Theory and Tech. 51, 259 (2003).Google Scholar
13 Duffy, S., et al., IEEE Microwave Wireless Comp. Lett. 11, 106 (2001).Google Scholar