Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T01:45:12.468Z Has data issue: false hasContentIssue false

AFM Studies on the Morphological Evolution of Chemically Deposited In2S3 Thin Films as a Function of Deposition Time

Published online by Cambridge University Press:  01 February 2011

Merida Sotelo-Lerma
Affiliation:
[email protected], Universidad de Sonora, Departamento de Investigacion en Polimeros y Materiales, Rosales y Blvd. Luis Encinas s/n, Apdo. Postal 130, Hermosillo, Sonora, 83190, Mexico, (52)(662)2592161, (52)(662)2592216
Omar Armando Castelo-Gonzalez
Affiliation:
[email protected], Universidad de Sonora, Departamento de Investigacion en Polimeros y Materiales, Apdo. Postal 130, Hermosillo, Sonora, 83190, Mexico
Rafael Ramirez-Bon
Affiliation:
[email protected], Centro de Investigación y Estudios Avanzados del IPN. Unidad Querétaro, Apdo. Postal 1-798, Querétaro, Querétaro, 76001, Mexico
Francisco Javier Espinoza-Beltran
Affiliation:
[email protected], Centro de Investigación y Estudios Avanzados del IPN. Unidad Querétaro, Apdo. Postal 1-798, Querétaro, Querétaro, 76001, Mexico
Get access

Abstract

Indium sulphide (In2S3) is a very promising semiconductor material for window layers in solar cell devices. It is currently being investigated for high efficiency solar cell based on Cu(In,Ga)Se2-In2S3 heterostructures. The chemical bath deposition (CBD) technique is one of the most convenient methods to obtain In2S3 films because of its simplicity, low cost and some other advantages. Amorphous and polycrystalline In2S3 films on glass substrates have been obtained by the CBD technique. Like in many others CBD processes, the deposition mechanism and kinetic growth of In2S3 films on glass substrates is not very well understood [1-6]. In this work we have chemically deposited In2S3 films for different times from 6 up to 39 hours, in order to study by atomic force microscopy (AFM) the formation of the films on glass substrates. The AFM measurements were performed in a liquid medium in which the cantilever tip and the sample are completely immersed in the liquid. A specially designed AFM cell is composed of a tip attached to a circular transparent window, the liquid level is between the upper and lower surface of the window, and a circular meniscus is established around the window, preventing the tip could be affected or destroyed by the surface tension of the liquid. By using this liquid AFM technique, we can at real-time observe the thin film forming process, and thereby clearly reveal the growing mechanism. It is an ideal and more practical tool for in situ investigation of samples which are normally found in liquid environments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hariskos, D., Ruckh, M., Ruhle, U., Walter, T., Shock, H. Werner, Hedstrom, J. and Stolt, L., Solar Energy Mat. and Solar Cells 41–42, 345 (1996).Google Scholar
2 Mane, R.S., Lokhande, C.D., Mat. Chem. Phys., 78, 15 (2002).Google Scholar
3 Kaufmann, C., Bayon, R., Bohne, W., Rohrich, J., Klenk, R., and P.Dobson, J., J. Electrochem. Soc., 149, C1 (2002).Google Scholar
4 Kitaev, G.A., Dvoinin, V.I., Ust'yantseva, A.V., Belyaeva, M.N. and Skomyakov, L.G., Inorg. Mat. 12, 1448 (1976).Google Scholar
5 Govender, K., Boyle, D.S. and O'Brien, P., J. Mat. Chem. 13, 2242 (2003).Google Scholar
6 Sandoval-Paz, M.G., Sotelo-Lerma, M., Valenzuela-Jáuregui, J.J., Flores-Acosta, M., and Ramírez-Bon, R., Thin Solid Films 472, 5 (2005).Google Scholar
7 Spiering, S., Hariskos, D., Powalla, M., Naghavi, N. and Lincot, D., Thin Solid Films 431–432, 359 (2003).Google Scholar
8 Barreau, N., Marsillac, S., Albertini, D. and Bernede, J. C., Thin Solid Films 403–404, 331 (2002).Google Scholar
9 Lockande, C.D., Ennaoui, A., Patil, P.S., Giersig, M., Diesner, K., Muller, M. and Tributsch, H., Thin Solid Films 340, 18 (1999).Google Scholar
10 Herrero, J. and Ortega, J., Solar Energy Materials 17, 357 (1988).Google Scholar